Using Clay Based Filaments to Create 3d-Prints

This is an extension of the WCMA artist project. 

At this point, all of the 3d-prints for the Williams College Museum of Art (WCMA) have been in PLA plastic filament. Creating them in plastic was relatively inexpensive, convenient (as we already had that filament on hand), and gave a good enough visual representation of what the pieces looked like. 

Now that we now have access to a pottery clay-based filament the 3d-prints can now be created using the new filament type. As the pieces cannot be held by the average person creating models using stone based filament gives more accurate information on the artifacts weight and texture.

Our current machines have brass nozzles which are not suitable for the more textured pottery clay based filament. As a result, the brass nozzle needs to be removed and replaced hardened steel nozzle. 

Once the hardened nozzle was installed, the printer was recalibrated to account for any thing that might have changed when it was taken apart. The seated deity was printed as an initial test of the filament because it had the least amount of problems when printing in PLA. It was printed at 0.15 mm quality with a 15% infill and supports were generated everywhere. 

These are the results. 

Leah Williams 3D printed this using clay filament for Dr. Beatriz Cortez.

Leah Williams 3D printed this using clay filament for Dr. Beatriz Cortez.


3d Printing Sculptures with WCMA

The makerspace was approached by a representative of the Williams College Museum of Art (WCMA) to create 3d models of some of the Maya objects, dated to approximately 600-900 CE, that they have in their collection. Some of their sculptures are old and have an unknown creator so creating 3d prints of them allows others to engage with them more and an accurate print gives insight into how it was made.

On the left is a hollow rattle and on the right is a corn pot.

When printing the corn pot a lot of issues were encountered. When printing a large model a lot of layer shifting in the print would happening and the front left leg would have problems adhering to the print bed. A variety of different solutions were trim including different kinds of bed adhesion methods (skirt, brim raft), decreasing the print speed and changing the size of the model.

Eventually the final model was created at 50% print speed, around 80% of the original size and a 3.0mm brim to help with bed adhesion.