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Euler’s Gem

Euler’s Gem, by David S. Richeson, is a book that outlines the effect of Euler’s
polyhedron formula on the fields of geometry and topology. He does this by first
outlining Euler’s life and the history of the study of polyhedra before Euler,
referencing ideas held by ancient Greek mathematicians as well as European
scholars closer to Euler’s own time period. He discusses Euler’s polyhedron formula
at length and provides several complex geometric proofs for the formula. Finally,
Richeson, writes about topology, a field that was hugely influenced by Euler’s
formula, and presents several examples of topological shapes that are categorized
by their Euler number.

Leonhard Euler was born in Basel, Switzerland on April 15, 1707. His father
was a Calvinist minister who had studied mathematics Jacob Bernoulli, one of the
most esteemed mathematicians of the age. At the age of fourteen Euler entered
university, where his father hoped he would study to be a minister. However, the
young Euler had a knack for mathematics and was quickly taken under the wing of
Johann Bernoulli, another eminent mathematician and brother to Jacob Bernoulli.
Bernoulli convinced Euler to abandon the ministry in favor of a career in

mathematics.



In 1727, Euler left the University of Basel to take a position in Physiology,
which he was not strictly qualified for, at the newly founded Russian Academy of
Sciences. In 1733, at the age of twenty-six, Euler replaced his friend Daniel Bernoulli
as the head of mathematics at the Academy of Sciences. That same year he was
married to Katharina Gsell, and started a family. During this time in his life, Euler
wrote and published prodigiously. Neither his total of thirteen children, nor the loss
of the vision in his right eye in 1738 slowed him down. Euler wrote on topics from
astronomy to ship building and beyond. He also displayed an incredible memory; it
is alleged that he could recite the whole text of The Aeneid, by Virgil and recite the
first six powers of the numbers one to one hundred.

In light of a worsening political climate in Russia, and a generous offer from
the Prussian Academy of Sciences in Berlin, Euler left Saint Petersburg in 1741. Once
there however, the ruler of Prussia, Fredrick I, received him coldly. Fredrick II, later
called the Great, was not a fan of mathematics or of Calvinists, being himself a Deist
and a fan of witty French philosophers like Voltaire. Euler often felt mistreated by
Fredrick, who often referenced Euler’s blindness in one eye by calling him his
“mathematical cyclops.” Finally, in 1966, after being passed over for the position of
president of the academy several times, and a series of disagreements with Fredrick
about the sale of almanacs and the marriage of Euler’s daughter, Euler returned to
the Russian Academy in Saint Petersburg. He would spend the remainder of his
career and life there. He died, completely blind at the age of seventy-six.

Out of the many theorems that Euler developed, the most elegant and

arguably the most influential is his Polyhedron Formula, which states that for any



convex polyhedron V - E + F = 2, where V stand for vertices, E stands for edges, and
F stands for faces. In order to understand this theorem and its repercussions, one
must first define a polyhedron. The word polyhedron comes from the Greek for
“many faces.” Polyhedra are commonly defined as three-dimensional geometric
shapes constructed from polygonal faces. Euler’s formula deals polyhedra that have
no indentations, often called convex polyhedra. Historically many mathematicians,
including the ancient Greeks who first did significant work with polyhedra, defined
all polyhedra as convex polyhedra, and any figure that had an indentation, or a face
which could not serve as the seat of the object, was not considered a polyhedron at
all.

The Greeks were the first people to do serious work in the field of geometry,
including polyhedra. In particular, the Greeks were fascinated by the five regular
polyhedra. There are only five regular polyhedra, the tetrahedron, the octahedron,
the cube, the icosahedron, which has twenty triangular sides, and the dodecahedron,
which has twelve pentagonal faces. The Greeks were the first to prove that only
these five satisfy the requirements to be considered a regular polyhedron. They are
all convey, all their sides are made of regular polygons, all their sides are identical
and the same number of sides surrounds each vertex. While proving that there are
only five polyhedra is significant, the more significant part of the discovery is the
concept of “regularity,” which up to that point was unknown.

Interestingly enough the Greeks took the five regular polyhedra to have
significance beyond the geometric. Plato assigned one regular polyhedron to each of

the four elements that were believed to comprise all matter in the world. A cube was



earth because it is least likely to roll and therefore the most stable. Fire is a
tetrahedron, water is an icosahedron, and air is an octahedron. The dodecahedron
was initially called “the universe” and later the quintessence, and it was argued that
it is the element from which the heavenly bodies were made. This theory was used
to explain chemical reactions between fire and water and air. Since they are all
made of regular triangles, they could be joined together or broken apart in order to
form other elements (i.e. two fires could join together to make an air). In honor of
Plato, these regular polyhedra are often called platonic solids.

After Europe entered the dark ages, mathematical progress in Europe stalled.
The work of the ancient Greek authors was preserved in the Arab world, but the
Arabs focused more on algebra than geometry, so work on polyhedra practically
stopped until the Renaissance in the 1400’s. At that time there was renewed interest
in sciences and classics as well, so the work of the ancient Greeks on polyhedra
reemerged. Kepler, who is now well known for his three laws of planetary motion,
also believed that the five regular polyhedra had spiritual significance. A deeply
religious man, Kepler believed that God had created a world that is mathematically
beautiful, and initially believed that the orbits of the planets were related to platonic
solids nested within spheres around the sun. He later disproved this theory, and
revised it into the one that we recognize today.

After Kepler, the next person discussed by the book as making significant
contributions to the study of polyhedra is Euler. Euler’s first great contribution to
this study is the “discovery” or the edges of a polyhedron. Previously no one had

given a name or explicitly referenced the edge of a polyhedron as a one-dimensional



boundary. Euler also shifted the idea of a “solid angle” to mean what is now called a
vertex, meaning that he used “solid angle” to mean the zero dimensional point at
which the edges join, as opposed to the geometric space enclosed by the angle.
However, he did not give a new name to the concept. Once he had three features or
polyhedra figured out (edges, faces, and vertices), Euler set about trying to define all
polyhedra based on these features. This led to his discovery of his famous
polyhedron formula, V-E + F = 2.

Euler, despite having discovered the formula, was never able to come up with
a proof for the theorem that would stand up to today’s standards of vigor. In fact the
proof wasn’t discovered until 1794 when Adrien-Marie Legendre published his own
proof of Euler’s formula, which differed from Eulers significantly.

Having spent ten chapters discussing the history and definitions of polyhedra
and Euler’s formula, Richeson now moves on to practical applications of Euler’s
theorem and other works, beginning with the Konigsberg Bridge problem. The
Konigsberg Bridge problem is about the city of Konigsberg, in which there isan
island in the middle of a fork in a river and seven bridges that either allow people
onto and off of the island or let people cross the various branches of the river. The
residents of the city want to walk through the city in such a way that they cross each
bridge exactly once. This problem was presented to Euler and not only did he solve
it, but he developed a theorem as a way to solve all similar problems.

He began by drawing a vertex in each of the four areas that were separated
by the river. He then drew lines that connected the vertices by crossing the various

bridges. He then determined that if there were zero or two vertices that had an odd



number of lines coming out of them, then there was a way to cross all seven bridges
without repeating. That unbroken and non-repeating path is now called an Euler
Walk. If there are no odd vertices then you can begin and end the Euler path in the
same place, which makes it an Euler Circuit. If there are two odd vertices then the
Euler walk must begin in one of them and end in the other. Sadly, this theorem
proved that there was no Euler walk in Konigsberg, so the people would remain
frustrated until a new bridge was added years later.

After that, the problems get more difficult for a mathematical layman to
understand and summarize. The next theorem discussed at length is the Four Colors
Theorem. Which states that any map ever created can be colored in with only four
colors. The author utilizes Euler’s work on the Konigsberg Bridge Problem to
provide very complicated proofs for the Six Colors Theorem, the Five Colors
Theorem, The Five Neighbor Theorem, and The Five Princes Problem before saying
that the Four Colors Theorem was finally proven in the 1970’s with the help of a
computer, making it one of the first ever computer aided proofs.

After that, the author moves into a discussion of topology, a topic in
mathematics that is often referred to as “rubber sheet geometry.” Basically
topological shapes are unlike convex polyhedrons in that they do not all have an
Euler number of two. In fact, topological surfaces are classified by their Euler
number. The most basic topological shape is a sphere, and a sphere has an Euler
number of tow. One creates other topological shapes by adding either handles of
cross caps to a sphere. A handle is a simple enough concept to understand. If you

literally paste a handle onto a sphere you basically create a shape that has one hole.



In topology, that shape is called a torus. For each handle you add, the Euler Number,
goes up down by two. So a torus has an Euler number of zero and a double torus,
which has two holes, has an Euler number of negative two, etc...

Cross caps on the other hand are a little harder to explain. A mobius strip is a
band that has one half twist in it so as to create a surface that has one side and one
edge. A cross caps is topologically identical to a mobius strip. In order to create a
cross cap from a mobius strip, one has to twist and stretch the strip in unfathomable
ways that require four dimensions to complete. A cross cap, like a mobius strip, has
an Euler number of zero. When one adds a cross cap to a sphere, they get a
projective plane, which has an Euler number of one. When one adds two cross caps
to a sphere, they get a Klein bottle, which is a topological shape in four dimensions,
with one side and no edges, and an Euler number of zero. Connecting the edges of
two mobius strips can make the same shape.

The remaining chapters are filled with topological problems that are even
more obscure. Richeson discusses how knots are also classified by their Euler
number and how the Euler number is in some ways descriptive of the space that it
created when a knot is filled in. Then he goes on to talk about vector fields, which
are basically fields of directional motion along the surface of a topological shape.
The most famous examples of the uses of vector fields are magnetic fields
surrounding a magnet and modeling the wind blowing on the earth in order to
prove that there is always a place on the earth where the wind is not blowing. He
then discusses topological surfaces in curved spaces and in more than four

dimensions.



He ends with a discussion of the Poincare Conjecture, which states that every
simply connected closed 3-manifold, which is a topological shape of some kind, is
homeomorphic (topologically similar) to the 3-sphere. At the time of the publishing
of this book, a million dollar reward was being offered to the person who could
come up with a proof of this conjecture. However, last year a Russian named Grigori
Perelman, came up with a proof, and so the Poincare Conjecture, is now the Poincare
Theorem.

Euler’s Gem presents a fascinating topic and the text is sprinkled with
interesting anecdotes about mathematical history. However most of the book is
thick with mathematical proofs and calculations that make it difficult for someone
not already well schooled in math to follow. Never the less, parts of it, especially the
chapter on the Konigsberg Bridge problem, are interesting and relevant to the

theatrical pursuit of maps.



CHAPTER 11

A STROLL THROUGH
KONIGSBERG

What is the use of going right over the old track again?
There is an adder in the path which your own feet have worn.
You must make tracks into the Unknown.

—Henry David Thoreau!

In order to place Euler’s formula in a modern context, we must discuss a
mathematical field called graph theory. This is not the study of graphs of
functions that we encountered in high school precalculus (y=mx+bisa
line, y = x? is a parabola, and so on.). It is the study of graphs such as those
shown in figure 11.1. They are made of points, called vertices, and lines
joining these points, called edges.*

In 1736, during his first stay in St. Petersburg, Euler tackled the now
famous problem of the seven bridges of Kénigsberg. His contribution to
this problem is often cited as the birth of graph theory and topology.

The city of Konigsberg was founded by the Teutonic Knights in 1254.
At that time it was located in Prussia, near the Baltic sea, on a fork in
the River Pregel. Later it became the capital of East Prussia. The city,
which was heavily damaged by Allied bombing during World War II, fell
under Soviet control following the Potsdam agreement. There were many
changes in Konigsberg after it became a Soviet state—most of the native
Germans were expelled, the name of the city was changed to Kaliningrad,
and the river was renamed the Pregolya. Today Kaliningrad is part of
Russia and is the capital of the Kaliningrad Oblast region. Kaliningrad
Oblast has the unique distinction that it is not connected to the rest of
Russia; it is surrounded by Poland, Lithuania, and the Baltic Sea. Unlike
cities such as Stalingrad and Leningrad, Kaliningrad has not reverted to its

*Sometimes graphs are called networks, with the vertices and edges called nodes and links,
respectively.

Figure 11.1. Graphs.

pre-Communist name. The most famous resident of Kénigsberg was the
eighteenth century philosopher Immanuel Kant (1724-1804). Also from
Konigsberg came Christian Goldbach, the mathematician to whom Euler
announced the discovery of his polyhedron formula.

The city is located on a fork in the river, and sitting in the middle of the
river, near the fork, is Kneiphof Island. In Euler’s time, there were seven
bridges crossing the river joining the various banks and the island (see
figure 11.2). As the story goes, the residents of Konigsberg would leisurely
walk around their city and entertain themselves by attempting to cross each
of the seven bridges exactly once. No one was able to find such a route. This
supposed pastime became the bridges of Kénigsberg problem:

Is it possible for a pedestrian to walk across all seven
bridges in Konigsberg without crossing any bridge twice?

It is not known how Euler learned of this problem. Perhaps he heard it
from his friend Carl Ehler, the mayor of Danzig, Prussia, who corresponded
with Euler on behalf of a local professor of mathematics. We have letters
between Ehler and Euler during the period 1735-1742, some of which
discuss the Konigsberg bridge problem. We do know that initially Euler
was indifferent. In 1736, in a letter to Ehler, Euler wrote:

Thus you see, most noble Sir, how this type of solution bears little
relationship to mathematics, and I do not understand why you
expect a mathematician to produce it, rather than anyone else, for
the solution is based on reason alone, and its discovery does not
depend on any mathematical principle.®

Eventually, Euler spent time thinking about the problem. The same fea-
ture that at first turned him off eventually piqued his interest: the problem
did not fit comfortably within the existing mathematical framework. He
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Figure 11.2. The seven bridges of Kénigsberg.

realized that the matter seemed geometrical, yet there was no need for exact
distances. Information about relative positions was all that was needed.

Another letter from 1736, this one written to the Italian mathematician
and engineer Giovanni Marinoni (1670-1755), said:

This question is so banal, but seemed to me worthy of attention in
that geometry, nor algebra, nor even the art of counting was
sufficient to solve it. In view of this, it occurred to me to wonder

whether it belonged to the geometry of position, which Leibniz had
once so much longed for.?

K

Figure 11.3. The graph associated with the bridges of Konigsberg problem.

In this letter Euler used a term coined by Leibniz, geometriam situs,
which translates to geometry of position. Later this term would become
anlaysis situs (analysis of position), and eventually, topology. Leibniz was
referring to a new field in mathematics, one that “deals directly with
position, as algebra deals with magnitudes.”* There is some disagreement
among scholars whether Euler misunderstood Leibniz’s use of this term;
nevertheless, Euler agreed with Leibniz’s recognition of the need for new
mathematical techniques to handle this situation.

In 1736 Euler presented his paper “Solutio problematis ad geometriam
situs pertinentis” (“The solution of a problem relating to the geometry
of position”) to the St. Petersburg Academy.® It was published in 1741.
In it Euler solved the Konigsberg bridge problem and, in his typical style,
generalized his solution to any layout.

Euler realized that the only important details in the problem are the
relative locations of the land masses and the bridges joining them. Using
a diagram, we can abstract the situation easily and elegantly. Place a
vertex on each piece of land (one on each of the three banks and one
on the island), and join each pair of vertices by as many edges as there
are bridges connecting the landmasses. The resulting graph is shown in
figure 11.3.

In this way, we reduce the problem to one about a graph—i.e., is it
possible to trace this graph with a pencil without lifting the pencil and
without redrawing any edge? From this example we can formulate the



more general question: how do we determine if we can trace a given graph
in this way?

It is a common misconception that the Konigsberg graph, shown in
figure 11.3, is found in Euler’s paper. In reality, neither the Konigsberg
graph nor any other graph appears there. Graph tracing developed in-
dependently of the Konigsberg bridge problem. Graph tracing puzzles
first appeared in the early nineteenth century, both in mathematical
articles and in books of recreational mathematics. It was not until 1892
that W. W. Rouse Ball (1850-1925), in his popular work Mathematical
Recreations and Problems,® made the connection between Euler’s result on
the bridges of Kénigsberg and graph tracing. The first appearance of the
Konigsberg graph was in Ball’s book, over a hundred and fifty years after
the publication of Euler’s paper.

It is also common to cite Euler’s paper as the genesis of graph theory.
This attribution is not unreasonable. Although Euler never drew a graph in
his paper, his abstract treatment of the problem resembles the graph theory
argument. His application of geometriam situs, what would later be called
topology, to the problem and his recognition of the novelty of this method
signals the start of this new field.

In order to discuss his solution we need a few definitions. As with
polyhedra, the degree of a vertex is the number of edges emanating from
it. If there is a loop at this vertex (an edge starting and ending at the vertex,
such as in the right graph in figure 11.1), then the loop contributes two
to the degree. The graph for the bridges of Kénigsberg problem has three
vertices of degree 3 and one vertex of degree 5. A graph is connected if it is
possible to get from any vertex to any other vertex by following a sequence
of edges.

A tracing of a graph that begins at one vertex and ends at another vertex
is called a walk. We are interested in a very special class of walks, ones that
visit each edge exactly one time: this is called an Euler walk. If the Euler
walk begins and ends at the same vertex, then it is called an Euler circuit.
In general, a circuit is a walk along a graph that starts and ends at the same
vertex and never visits the same edge twice. A (non-Eulerian) circuit may
not visit every edge.

Using the language of graph theory, we recast the bridges of Konigsberg
problem as follows.

Does the bridges of Konigsberg graph (figure 11.3) have
an Euler walk? More generally, how do we determine ifa
graph has an Euler walk?

Euler solved both of these problems. Translated in to modern language,
it is stated as follows.

A graph has an Euler walk precisely when it is connected and there are
sero or two vertices of odd degree. If there is a pair of vertices of odd
degree, then the walk must start at one of these vertices; otherwise the
walk may begin anywhere.

Using these criteria we casily solve the bridges of Konigsberg problem.
Because the graph has four vertices of odd degree, there is no Euler walk!
It is no wonder that the residents of Konigsberg were so frustrated in their
search for the ideal afternoon stroll.

But why is Euler’s solution true? The requirement that the graph be
connected is obvious. The insistence that the graph have zero or two
vertices of odd degree requires some thought. To prove the theorem, we
have two objectives. First we must show that any graph with an Euler walk
must have zero or two vertices of odd degree. Then we must show the
converse: if a connected graph has zero or two vertices of odd degree, then
it has an Euler walk.

Suppose we have a graph with an Euler walk; we will show that it must
have zero or two vertices of odd degree. Place a sheet of tracing paper on
top of the graph and proceed to trace the Euler walk. As we begin tracing
the Euler walk, the first vertex will have degree one, and all other vertices
will have degree zero. As we get to, and trace through, the second vertex, it
will have degree two. From then on, each time we pass a vertex, the degree
increases by two. This continues until we reach the end of the walk. At this
point, we add one to the degree of the last vertex. If the walk starts and ends
at two different vertices, then these two vertices will have odd degree, and
they will be the only vertices of odd degree. If the walk starts and ends at
the same vertex, then it, and all other vertices, will have even degree.

Euler took the converse for granted: if a graph has zero or two vertices
of odd degree, then it has an Euler walk. The first demonstration of
this fact was given by Carl Hierholzer (1840-1871), and was published
posthumously in 1873.7

Begin with a connected graph having either zero or two vertices of odd
degree. If the graph has a pair of vertices of odd degree, then place the pencil
at one of these vertices; otherwise put it at any vertex. Begin tracing in any
direction. Upon reaching the first vertex, choose randomly a new edge to
follow. Continue in this way, making arbitrary choices at each vertex (while




Figure 11.4. Building an Euler walk.

avoiding edges that were previously visited, of course), until it is impossible
to go any farther. By the argument given earlier, if we began at a vertex of
odd degree, then the end of this tracing will be at the other vertex of odd
degree; otherwise the tracing will end at the starting vertex. In figure 11.4
path abedefghi is such a walk.

If this path does not pass through every edge in the graph, then remove
all of the traced edges and look at the remaining graph (it may no longer be
connected). Place your pencil at a vertex that was in your original tracing.
As before, trace this graph until it is impossible to trace any farther. In
our example, we obtain the walk jkI. Now insert this new tracing into the
appropriate location of the walk that you constructed previously. In our
example, we may insert jkl between edges b and c of the original walk.
So, we obtain abjklcde fghi, which is an Euler walk. In general, it may be
necessary to make several such insertions before all edges are traced.

Notice that we learned more about graph tracing than is evident in the
solution given above. Our discussion was aimed at finding Euler walks, but
we also determined when the walk can begin and end at the same vertex.

New bridge

Figure 11.5. A new bridge in Konigsberg and the new graph.

That is:

A graph has an Euler circuit precisely when it is connected and has no
vertices of odd degree. In this case, the Euler circuit can begin and end at
any vertex.

In 1875, a century and a half after Euler analyzed the walking routes
of the city of Kénigsberg, the city built a new bridge.® It was erected
west of Kneiphof Island from the northern bank to the southern bank
(see figure 11.5). With this in place, the residents of Konigsberg could
finally take a stroll across all the bridges and visit each bridge exactly one
time, for there were now exactly two vertices of odd degree—the vertices
corresponding to the island and the land between the fork. Of course, some
of the townsfolk were not able to begin their walk at their front doorstep,
and no one was able to end his or her walk where it began.

This solution to the Kénigsberg bridge problem illustrates a general
mathematical phenomenon. When examining a problem, we may be over-
whelmed by extraneous information. A good problem-solving technique
strips away irrelevant information and focuses on the essence of the
situation. In this case details such as the exact positions of the bridges
and land masses, the width of the river, and the shape of the island were
extraneous. Euler turned the problem into one that is simple to state in
graph theory terms. Such is the sign of genius.



Figure 11.6. Listing’s graph-tracing puzzle.
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Figure 11.7. An incorrect solution to the brick wall puzzle.

We conclude with three examples. In 1847, Johann Benedict Listing (1808
1882), a mathematician whom will meet again later, produced the graph
shown in figure 11.6 to illustrate the tracing problem (we draw the graph
as Listing did and omit the vertices at the intersections).” Does it have an
Euler walk? Does it have an Euler circuit? The reader may wish to think
about this problem before proceeding.

We see that every vertex has even degree except for the left-most and
right-most—these vertices have degree five. Because there are exactly two
vertices of odd degree, Listing’s graph does have an Euler walk, and every
Euler walk must begin at one of these vertices and end at the other. Because
the graph has vertices of odd degree, there is no Euler circuit. '

The second example is a variation on the bridge problem. Consider the
drawing resembling a brick wall shown in figure 11.7. Is it possible to
draw a single unbroken curve that crosses each of the line segments in the
figure exactly one time (the curve may begin and end in different bricks)?
The attempt shown on the right is not a valid solution because there is
one uncrossed segment.

It is not possible. We can justify this claim by transforming the problem
into a graph-tracing problem. Place one vertex inside each brick and one
vertex outside the figure. Draw one edge from a vertex to another vertex
for each segment separating the corresponding bricks in the original picture

Figure 11.9. A typical game of dominoes.

(see figure 11.8). It suffices to determine whether this graph has an Euler
walk. Because the graph has four vertices of degree five, it has no Euler
walk. So there is no curve with the desired properties.

Finally, we apply graph theory and Euler walks to the game of dominoes.
This example was concocted by Orly Terquem (1782-1862) in 1849.1 In a
standard set of dominoes, each half of a domino has zero to six pips. No
two dominoes in the set are alike, and every combination is present in the
set. This gives a total of 28 dominoes. Play alternates as each player lays
down a domino in such a way that the number on half of her domino abuts
the same number on an existing domino. A domino with the same number
of pips on each half can be placed in a T formation against a tile with that
number of pips on one half (see figure 11.9). Play ends when a player is
unable to lay down another domino. We ask, will a game always end with
a player holding dominoes in his cache? Or is it possible to lay down all of
the dominoes and never get stuck?

To analyze this problem we create a graph as follows. Start with seven
vertices labeled 0 through 6. Each domino corresponds to an edge on this



Figure 11.11. Part of a game of dominoes in which every tile is played, and the
corresponding graph.

graph. A domino with m pips on one half and # pips on the other becomes
an edge from vertex m to vertex n. Putting all of the dominoes on the
graph we obtain figure 11.10. Notice that there is a loop at each vertex
corresponding to dominoes with the same number of pips on each half.

Each vertex in the domino graph has degree eight. Because the degree
of every vertex is even, this graph has an Euler walk. So, we can trace the
entire graph passing through each edge exactly one time. This observation
is the key to answering our question. To show that we can play all of the
dominoes, it suffices to find one configuration that achieves this end. The
one we produce is simple (although it would be unlikely to arise in actual
play)—a line of dominoes.

Start with the first edge in the Euler walk. Suppose it joins vertices 0 and
3. Lay down the domino containing zero pips and three pips. Now consider
the second edge in the walk. We know that this edge must begin at vertex 3.
Suppose the edge joins vertices 3 and 1. We then lay down the domino with
three pips and one pip on the end of the previous domino (see figure 11.11).

We continue on in this ftashion, laying aown ties as we go. DeECIUsE we dic
following an Euler walk, we will get each edge exactly one time. Thus we
will be able to lay down every domino in the set.

As these examples show, graph theory has some wonderful applications
to recreational mathematics. However, it is also a very important field
of mathematics that has numerous practical applications in such diverse
areas as computer science, networking, social structures, transportation
systems, and epidemiological modeling. We will see graph theory again in
the chapters that follow. In particular, we will create an analogue of Euler’s
formula for a certain class of graphs.



