
Backgammon - AnalyzingDoubling
Professor Steven JMiller : sjm1@williams.edu

In [154] :=

double[numdo_, pdouble_, paccept_, pointswin_, print_] := Module[{},

(* numdo is number of iterations *)

(* pdouble/paccept is threshold for first to double 2nd to accept *)

(* pointswin is how many points need to win. our

model will be to toss a fair coin and each toss each person equally

likely to get a point. if we take 100 points it makes it very easy. *)

results = {};

netresults = 0;

onewin = 0;

twowin = 0;

doublesoffered = {};

doublesaccepted = {};

For[n = 1, n ≤ numdo, n++,

{

score = pointswin/2;

(* player one wins if reach pointswin points, player two if reach 0 *)

pwin = score / pointswin; (* might as well start keeping track

when probability of one player of winning is pdouble, and now double *)

valuegame = 1; (* initially worth one point *)

whocandouble = 1;

(* set up so player 1 doubles first wlog *)

score = Floor[pdouble * pointswin];

doublesingameoffered = 0;

doublesingameaccepted = 0;

While[score > 0 && score < pointswin,

{

pwin = score / pointswin;

If[print  1, Print["Score = ", score,

" and prob win = ", 1.0 pwin, " and value of game = ", valuegame]];

(* see if player one can double *)

If[pwin ≥ pdouble && whocandouble  1,

If[pwin > paccept,

{

(* decline *)

results = AppendTo[results, valuegame];

onewin = onewin + 1;

netresults = netresults + valuegame;

score = pointswin + 100; (* ends game! *)

If[print  1, Print["Two declines"]];

doublesingameoffered++;

},

{

(* accept *)

valuegame = valuegame * 2;

whocandouble = 2;

If[print  1, Print["Two accepts"]];

doublesingameoffered++;

doublesingameaccepted++;

}];

]; (* end of player one doubling *)

(* see if player two can double *)

If[1 - pwin ≥ pdouble && whocandouble  2,

If[1 - pwin > paccept,

{

(* decline *)

results = AppendTo[results, -valuegame];

twowin = twowin + 1;

netresults = netresults - valuegame;

score = -100; (* ends game! *)

If[print  1, Print["One declines"]];

doublesingameoffered++;

},

{

(* accept *)

valuegame = valuegame * 2;

whocandouble = 1;

If[print  1, Print["One accepts"]];

doublesingameoffered++;

doublesingameaccepted++;

}];

]; (* end of player two doubling *)

(* check to see if game should end *)

(* do next turn *)

If[Random[] < .5, score = score + 1, score = score - 1];

If[score  pointswin,

{

onewin = onewin + 1;

results = AppendTo[results, valuegame];

netresults = netresults + valuegame;

score = score + 100;

}];

If[score  0,

{

twowin = twowin + 1;

results = AppendTo[results, -valuegame];

netresults = netresults - valuegame;

score = - 100;

}];

}]; (* end of while loop *)

doublesoffered = AppendTo[doublesoffered, doublesingameoffered];

doublesaccepted = AppendTo[doublesaccepted, doublesingameaccepted];

}]; (* end of n loop *)

2 BackgammonDoublingAnalysis3.nb

Print["Prob double is ", 1.0 pdouble, " and prob accept is ", 1.0 paccept];

Print["Player one's winning percentage = ", 100.0 onewin / numdo, "%."];

Print["Player two's winning percentage = ", 100.0 twowin / numdo, "%."];

Print["netresults / numgames = ", 1.0 netresults / numdo];

Print["Average Abs[game value] = ",

1.0 Sum[Abs[results〚k〛], {k, 1, Length[results]}]/numdo];

Print["Ave number of doubles offered = ",

1.0 Mean[doublesoffered], " and stdev = ", 1.0 StandardDeviation[doublesoffered]];

Print["Ave number of doubles accepted = ",

1.0 Mean[doublesaccepted], " and stdev = ", 1.0 StandardDeviation[doublesaccepted]];

Print["Histogram of Results - how much the first to double wins."];

Print[Histogram[results, Automatic, "Probability"]];

Print["Histogram on number of doubles offered."];

Print[Histogram[doublesoffered, Automatic, "Probability"]];

]; (* end of module *)

In [156] :=

Timing[double[10 000, 70 / 100, 95 / 100, 100, 0]]

BackgammonDoublingAnalysis3.nb 3

Prob double is 0.7 and prob accept is 0.95

Player one's winning percentage = 70.93%.

Player two's winning percentage = 29.07%.

netresults / numgames = 0.1304

Average Abs[game value] = 7.1576

Ave number of doubles offered = 1.7289 and stdev = 1.1398

Ave number of doubles accepted = 1.7289 and stdev = 1.1398

Histogram of Results - how much the first to double wins.

-30 -20 -10 0 10 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Histogram on number of doubles offered.

2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Out[156]=

{36.3438, Null}

In [160] :=

Timing[double[40 000, 70 / 100, 95 / 100, 100, 0]]

4 BackgammonDoublingAnalysis3.nb

Prob double is 0.7 and prob accept is 0.95

Player one's winning percentage = 70.07%.

Player two's winning percentage = 29.93%.

netresults / numgames = -0.06205

Average Abs[game value] = 7.49655

Ave number of doubles offered = 1.7594 and stdev = 1.1595

Ave number of doubles accepted = 1.7594 and stdev = 1.1595

Histogram of Results - how much the first to double wins.

-40 -20 0 20 40 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Histogram on number of doubles offered.

2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Out[160]=

{142.047, Null}

BackgammonDoublingAnalysis3.nb 5

In [5] := checkprob[numdo_, prob_, pointswin_] := Module[{},

onewin = 0;

twowin = 0;

For[n = 1, n ≤ numdo, n++,

{

score = prob * pointswin;

While[score > 0 && score < pointswin,

{

score = score + If[Random[] < .5, 1, -1];

}]; (* end of while loop *)

If[score  pointswin, onewin = onewin + 1, twowin = twowin + 1];

}]; (* end of for loop *)

Print["Prob p = ", prob];

Print["Prob player 1 wins is ", onewin * 100.0 / numdo];

Print["Prob player 2 wins is ", twowin * 100.0 / numdo];

];

In [8] := checkprob[10 000, .5, 100]

Prob p = 0.5

Prob player 1 wins is 49.9

Prob player 2 wins is 50.1

In [9] := checkprob[10 000, .72, 100]

Prob p = 0.72

Prob player 1 wins is 71.73

Prob player 2 wins is 28.27

In [10] := checkprob[10 000, .87, 100]

Prob p = 0.87

Prob player 1 wins is 87.5

Prob player 2 wins is 12.5

In [11] := checkprob[10 000, .87, 200]

Prob p = 0.87

Prob player 1 wins is 87.26

Prob player 2 wins is 12.74

6 BackgammonDoublingAnalysis3.nb

