Backgammon - Analyzing Doubling
 Professor Steven J Miller: sjm1@williams.edu

$\ln [154]:=$

```
double[numdo_, pdouble_, paccept_, pointswin_, print_] := Module[{},
    (* numdo is number of iterations *)
    (* pdouble/paccept is threshold for first to double 2nd to accept *)
    (* pointswin is how many points need to win. our
    model will be to toss a fair coin and each toss each person equally
    likely to get a point. if we take }100\mathrm{ points it makes it very easy. *)
    results = {};
    netresults = 0;
    onewin = 0;
    twowin = 0;
    doublesoffered = {};
    doublesaccepted = {};
    For[n = 1, n \leq numdo, n++,
    {
        score = pointswin/2;
        (* player one wins if reach pointswin points, player two if reach 0 *)
        pwin = score / pointswin; (* might as well start keeping track
            when probability of one player of winning is pdouble, and now double *)
        valuegame = 1; (* initially worth one point *)
        whocandouble = 1;
        (* set up so player 1 doubles first wlog *)
        score = Floor[pdouble * pointswin];
        doublesingameoffered = 0;
        doublesingameaccepted = 0;
        While[score > 0 && score < pointswin,
            {
            pwin = score / pointswin;
            If[print == 1, Print["Score = ", score,
                " and prob win = ", 1.0 pwin, " and value of game = ", valuegame]];
            (* see if player one can double *)
            If[pwin \geq pdouble && whocandouble == 1,
            If[pwin > paccept,
                    {
                        (* decline *)
                        results = AppendTo[results, valuegame];
                        onewin = onewin + 1;
                        netresults = netresults + valuegame;
                        score = pointswin + 100; (* ends game! *)
                If[print == 1, Print["Two declines"]];
                        doublesingameoffered++;
                },
                {
                    (* accept *)
                    valuegame = valuegame * 2;
```

```
        whocandouble = 2;
        If[print == 1, Print["Two accepts"]];
        doublesingameoffered ++;
        doublesingameaccepted++;
        }];
]; (* end of player one doubling *)
(* see if player two can double *)
If[1 - pwin \geq pdouble && whocandouble == 2,
If[1- pwin > paccept,
    {
        (* decline *)
        results = AppendTo[results, -valuegame];
        twowin = twowin + 1;
        netresults = netresults - valuegame;
        score =-100; (* ends game! *)
        If[print == 1, Print["One declines"]];
        doublesingameoffered++;
    },
    {
        (* accept *)
        valuegame = valuegame * 2;
        whocandouble = 1;
        If[print == 1, Print["One accepts"]];
        doublesingameoffered++;
        doublesingameaccepted++;
        }];
]; (* end of player two doubling *)
(* check to see if game should end *)
(* do next turn *)
If[Random[] < .5, score = score + 1, score = score - 1];
If[score == pointswin,
    {
        onewin = onewin + 1;
        results = AppendTo[results, valuegame];
        netresults = netresults + valuegame;
        score = score + 100;
    }];
If[score == 0,
    {
        twowin = twowin + 1;
        results = AppendTo[results, -valuegame];
        netresults = netresults - valuegame;
        score = - 100;
    } ];
}]; (* end of while loop *)
doublesoffered = AppendTo[doublesoffered, doublesingameoffered];
doublesaccepted = AppendTo[doublesaccepted, doublesingameaccepted];
}]; (* end of n loop *)
```

```
    Print["Prob double is ", 1.0 pdouble, " and prob accept is ", 1.0 paccept];
    Print["Player one's winning percentage = ", 100.0 onewin / numdo, "%."];
    Print["Player two's winning percentage = ", 100.0 twowin / numdo, "%."];
    Print["netresults / numgames = ", 1.0 netresults / numdo];
    Print["Average Abs[game value] = ",
        1.0 Sum[Abs[results\llbracketk\rrbracket], {k, 1, Length[results]}] / numdo];
        Print["Ave number of doubles offered = ",
    1.0 Mean[doublesoffered], " and stdev = ", 1.0 StandardDeviation[doublesoffered]];
    Print["Ave number of doubles accepted = ",
    1.0 Mean[doublesaccepted], " and stdev = ", 1.0 StandardDeviation[doublesaccepted]];
    Print["Histogram of Results - how much the first to double wins."];
    Print[Histogram[results, Automatic, "Probability"]];
    Print["Histogram on number of doubles offered."];
    Print[Histogram[doublesoffered, Automatic, "Probability"]];
]; (* end of module *)
    Timing[double[10000, 70 / 100, 95 / 100, 100, 0]]
```

$\ln [156]:=$

Prob double is 0.7 and prob accept is 0.95
Player one's winning percentage $=70.93 \%$.
Player two's winning percentage $=29.07 \%$.
netresults / numgames $=0.1304$
Average Abs [game value] $=7.1576$
Ave number of doubles offered $=1.7289$ and stdev $=1.1398$
Ave number of doubles accepted $=1.7289$ and $s t d e v=1.1398$
Histogram of Results - how much the first to double wins.

Histogram on number of doubles offered.

Out[156]=
\{36.3438, Null $\}$
$\ln [160]:=$
Timing[double[40000, $70 / 100,95 / 100,100,0]]$

Prob double is 0.7 and prob accept is 0.95
Player one's winning percentage $=70.07 \%$.
Player two's winning percentage $=29.93 \%$.
netresults / numgames $=-0.06205$
Average Abs[game value] $=7.49655$
Ave number of doubles offered $=1.7594$ and $s t d e v=1.1595$
Ave number of doubles accepted $=1.7594$ and stdev $=1.1595$
Histogram of Results - how much the first to double wins.

Histogram on number of doubles offered.

Out[160]=
$\{142.047$, Null $\}$

```
In[5]:= checkprob[numdo_, prob_, pointswin_] := Module[{},
            onewin = 0;
            twowin = 0;
            For[n = 1, n s numdo, n++,
            {
            score = prob * pointswin;
            While[score > 0 && score < pointswin,
                {
                score = score + If[Random[] < .5, 1, - 1];
            }]; (* end of while loop *)
            If[score == pointswin, onewin = onewin + 1, twowin = twowin + 1];
            }]; (* end of for loop *)
        Print["Prob p = ", prob];
        Print["Prob player 1 wins is ", onewin * 100.0 / numdo];
        Print["Prob player 2 wins is ", twowin * 100.0 / numdo];
        ];
In[8]:= checkprob[10000, .5, 100]
    Prob p = 0.5
    Prob player 1 wins is 49.9
    Prob player 2 wins is 50.1
In[9]:= checkprob[10000, .72, 100]
    Prob p = 0.72
    Prob player 1 wins is 71.73
    Prob player 2 wins is 28.27
In[10]:= checkprob[10000, .87, 100]
    Prob p = 0.87
    Prob player 1 wins is 87.5
    Prob player 2 wins is 12.5
In[11]:= checkprob[10000, .87, 200]
Prob p = 0.87
Prob player 1 wins is 87.26
Prob player 2 wins is 12.74
```

