

# Precise atomic structure measurements in Pb using vapor-cell and atomic-beam spectroscopy

### Background

- Heavy, multivalence elements are good testbeds for testing fundamental particle physics interactions  $\rightarrow$ effects scale as  $\sim Z^3$ .  $\rightarrow$  Atomic theory is challenging!
- Previous work with Group IIIA In and Tl tested *ab initio* multi-valence wavefunction models (Majumder + Safronova group collaborations).
- New focus is on Group IV Pb (two existing precise) PNC experimental results). Improved atomic theory, but requires new, accurate experimental benchmarks...

## Pb energy levels (group IV)



accurate determination of thermal population

Laser 2

- $\succ$  Few forbidden transition isotope shift measurements in Pb exist. > Measurement precision limited by velocity-changing collisions.
- $\succ$  Solution: use fast-switching (kHz $\rightarrow$ MHz) AOM and lock-in detection
- Lock pump (939 nm) laser to <sup>208</sup>Pb and <sup>206</sup>Pb midpoint.
- Scan 406 nm laser.
- > Counter and co-propagating configurations allow for isotope shifts of both the (6s<sup>2</sup>)  ${}^{3}P_{1}$  and (6p7s)  ${}^{3}P_{0}$  levels to be determined.

## John H. Lacy, Abby Kinney\* '24, Robin Wang<sup>†</sup> '24, Charles Yang<sup>#</sup> '24, and P. K. Majumder

Department of Physics, Williams College, Williamstown, MA 01267 USA \*  $\rightarrow$  Physics Dept., U. Chicago;  $^{\dagger} \rightarrow$  QSE program, Harvard Univ.;  $^{\#} \rightarrow$  Physics Dept., Rice Univ.

### Towards Pb Scalar Polarizability Measurements in an Atomic Beam











939 nm (E2) (6p<sup>2</sup>) <sup>3</sup>P<sub>0</sub> Co prop ≈ 1963 MHz Counter prop ≈ 2893 MHz



Work supported by **NSF grant #1912369** 



Pb-208 👭

| ent procedure:                                                       |                                               |                  |                                                                                                                                   |
|----------------------------------------------------------------------|-----------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| er to ${}^{3}P_{0} \rightarrow {}^{3}P_{1}$                          | Quantity (rel. to vapor cell @                | Vapor<br>cell in | Atomic beam (@ 1050°C)                                                                                                            |
| nm).                                                                 | 800 °C)                                       | furnace          |                                                                                                                                   |
| nt cavity to steep edge                                              | Peak absorption cross section                 | σ <sub>0</sub>   | $\sigma_0 \times 10$ (Doppler narrowing)                                                                                          |
| hanced (x50) as atomic                                               | <sup>3</sup> P <sub>1</sub><br>number density | n <sub>0</sub>   | $n_{\theta} \times 50 \text{ (M1 pre - pumping)} \times 10 \text{ (thermal/Boltzmann)} \times 10^{-4} \text{ (Competrical loss)}$ |
| ugh cavity ( $\tau \sim 0.25$ s).<br>(6p7s) ${}^{3}P_{0}$ transition | Interaction<br>length                         | l                | $\ell \times 0.2$ (atomic beam width)                                                                                             |
| ligh E-field.                                                        | <b>Optical depth</b>                          | 1                | 0.01 - 0. 1                                                                                                                       |
| ncement (vapor cell)                                                 |                                               |                  |                                                                                                                                   |

Unshifted – **BLACK** 

Shifted (20 kV/cm)- RED



| 6d <sub>5/2</sub> F=3<br>F=2 | <ul> <li>Isotopically pure TI-205 cell for <e1> amplitude measurements:</e1></li> <li>Faraday rotation spectroscopy and/or transmission spectroscopy (as above) to measure (E1)/(M1) ratio.</li> <li><m1> precisely calculable, serves as reference</m1></li> <li>Generate green or near UV light via fiber-based frequency doubling</li> </ul> |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| , both <b>I=1/2</b>          | <ul> <li>Natural abundance (205/203) cell for Isotope Shifts:</li> <li>M1 pump with fast switch / lock-in detection of<br/>Doppler-free E1 transmission signal (as above).</li> <li>CO / CTR signals again reveal both upper state<br/>and 6p<sub>3/2</sub> – state isotope shift (never measured)</li> </ul>                                   |  |