
Asymptotic Expansions for Bounds of

ε-Pseudospectra of Nonnormal Matrices

by

ALEX BANK

Mihai Stoiciu, Advisor

A thesis submitted in partial fulfillment

of the requirements for the

Degree of Bachelor of Arts with Honors

in Mathematics

WILLIAMS COLLEGE

Williamstown, Massachusetts

April 30, 2020

Abstract

In this thesis, we first introduce the tenants of spectral theory and the concept of

pseudospectra. We briefly discuss the relevant properties of pseudospectra and its

connection to potential theory. Motivated by recent research on the pseudospectra

of Jordan blocks, we study the pseudospectra of nonnormal matrices. Specifically,

we look at the ε-pseudospectral radius of Jordan blocks and work to improve on

the best known upper and lower bounds for these radii.

We define up with a new class of error matrix to produce the best known

lower bound for the pseudospectral radius of the Jordan Block. We end with

a computational approach to the problem by using software to approximate the

pseudospectral radius and its expansion as a function of epsilon. The numbers

generated in approximating the pseduospectral radius are new findings, and present

a potential area and goal for further research.

Alex Bank

Williams College

Williamstown, Massachusetts 01267, USA

1

Acknowledgements

First, to my advisor Professor Mihai Stoiciu: my deepest thanks for your patience,

kindness, and support. Besides this thesis, your Senior Seminar class and working

as your TA have shown me just how deeply you care for your students and made

my senior year beyond memorable. Thanks also to Professor Thomas Garrity for

being my second reader—I appreciate all your insights and antics that have livened

my math career. Thank you to all the professors in the department for making

the math community at Williams such a wonderful place. I also want to thank the

residents of Susan Hopkins house for the endless pots of tea that made this thesis

possible. Lastly, I must thank my friends and family for all the times you kindly

nodded and pretended to care while I went on about pseudospectra.

2

CONTENTS

Contents

1 Introduction 4

2 Introduction to Pseudospectra 5

2.1 Spectra and Associated Definitions 5

2.2 Pseudospectra . 5

2.3 Properties of Pseudospectra . 8

2.4 General Bounds for Diagonalizable Matrices 13

3 Pseudospectra of Nonnormal Matrices 15

3.1 Circulant Matrices . 15

3.2 Triangular Toeplitz Matrices . 17

3.3 The Jordan Block . 18

3.4 The 2× 2 Jordan Block . 22

3.5 The 3× 3 Jordan Block . 23

4 Computational Analysis of Pseudospectral Radius 27

4.1 Radius of the Jordan Block . 27

4.2 Upper Bound on the Radius of the Jordan Block 32

5 References 36

6 Appendix of Code 38

3

1 INTRODUCTION

1 Introduction

Matrices exist everywhere in mathematics and everyday life. Any linear trans-

formation—be it a rotation, reflection, or a translation—can be represented by a

square matrix. However, most times just looking at the values of a matrix does not

reveal the properties of the matrix.

Hence the concept of eigenvalues. Eigenvalues give personality to a matrix.

The eigenvalues can be plotted and visualized, providing concrete information about

the given matrix.

We will primarily explore the concept of matrix pseudospectra in this thesis.

Nicholas Higam motivates the concept of pseudospectra very well in his review of a

larger work by Lloyd Trefethen and Mark Embree [1]. Higam states that the study

of eigenvalues began in the 1930s when several engineers were using matrix methods

in an attempt to understand flutter (unwanted vibration) in aircrafts. Flutter is

still an issue in aerodynamic design and testing. It turns out that the problem

boils down to understanding the behavior of
∥∥eAt∥∥ and

∥∥eA′t
∥∥ for a large matrix

A. Pseudospectra explain the behavior of eAt and An as t → ∞ and t → 0, in

particular by providing lower bounds that accurately track this behavior. More

information can be found in the full Trefethen and Embree text [2].

The thesis is structured in three parts. The first part is mostly definitional

and sets up key concepts for later explorations and proofs. The second section

deals with known theory on the structure of pseudospectra of nonnormal matrices,

and and the end of the section gets into original work on the 3 × 3 Jordan block.

Finally, the last section contains new numerical work on the pseudospectral radii

of Jordan blocks. The numerical analysis prompts several conjectures for further

avenues of research.

4

2 INTRODUCTION TO PSEUDOSPECTRA

2 Introduction to Pseudospectra

2.1 Spectra and Associated Definitions

Let A be an N × N matrix with real or complex coefficients; i.e. A ∈ CN×N . Let

~v be a nonzero real or complex column vector of length N , and let λ be a real or

complex scalar; we write ~v ∈ CN and λ ∈ C. Then ~v is an eigenvector of A, and λ

is its corresponding eigenvalue, if

A~v = λ~v. (2.1)

The set of all eigenvalues of A is called the spectrum of A, denoted σ(A), a nonempty

subspace of the complex plane C. We can equivalently define the spectrum as the

set of points z ∈ C where the resolvent of the matrix,

(zI − A)−1 (2.2)

does not exist. In this paper, we will use z − A as shorthand for zI − A.

This second definition is useful to have because we will want to explore the

behavior of ‖(z − A)−1‖ as a function of z. But to do this we first need to select

a choice of norm, ‖·‖. Throughout this thesis we will use the 2-norm, defined by

‖~x‖2 = (
∑
|xj|2)1/2 for a vector ~x ∈ C and by

‖A‖2 = max
~x

‖A~x‖2
‖~x‖2

(2.3)

for a matrix A. We can alternatively think of equation 2.3 geometrically. If we

apply our matrix A to every vector of magnitude one, the 2-norm equals the greatest

magnitude of all the resulting vectors.

2.2 Pseudospectra

We start with the equivalent questions, ”Is z an eigenvalue of A?” and ”Is z − A
singular?” These are not robust questions, as an arbitrarily small perturbation of

z can change the answer from yes to no. Therefore, we want to be asking the

question, ’Is ‖(z − A)−1‖ large?’ This question motivates the first definition of

pseudospectra.

5

2 INTRODUCTION TO PSEUDOSPECTRA

Definition 1: Pseudospectra

Let A ∈ CN×N and ε > 0 be arbitrary. The ε-pseudospectrum σε(A) of A is

the set z ∈ C such that ∥∥(z − A)−1
∥∥ > ε−1

Another natural way to look at these ε-small perturbations is to consider the

set of all matrices with norm less than epsilon. In other words, we can perturb our

matrix by some other matrix with norm less than epsilon, and look at the spectrum

of the resulting matrix. This motivates a second way to define pseudospectra.

Definition 2: Pseudospectra

The ε-pseudospectrum σε(A) is the set of z ∈ C such that

z ∈ σ(A+ E)

for some E ∈ CN×N with ‖E‖ < ε.

One last concept we can consider is that of the pseudo-eigenvector. Notice

that the equation A~v = λ~v implies (A− λ)~v = 0, so the norm of the left hand side

is zero. Thus, we may consider the pseudospectrum of A all of the points z ∈ C
that get our norm very close to zero for a vector of length one, motivating the last

definition for pseudospectra.

Definition 3: Pseudospectra

The ε-pseudospectrum σε(A) is the set of z ∈ C such that

‖(z − A)~v‖ < ε

for some ~v ∈ CN with ‖~v‖ = 1.

Not surprisingly, we have the following theorem.

Theorem 2.1. The three definitions above are equivalent.

6

2 INTRODUCTION TO PSEUDOSPECTRA

Proof. For z ∈ σ(A), the equivalence is trivial, so assume z 6∈ σ(A). This implies

the existence of (z − A)−1. To prove 2 ⇒ 3, suppose that (A + E)~v = z~v for

some E ∈ CN×N with ‖E‖ < ε and some nonzero ~v ∈ CN , which we may say is

normalized, or ‖~v‖ = 1. Then ‖(z − A)~v‖ = ‖E~v‖ < ε, as required. To prove 3

⇒ 1, suppose (z − A)~v = s~u for some ~v, ~u ∈ CN with ‖vecv‖ = ‖~u‖ = 1. and

s < ε. Then (z − A)−1~u = s−1~v, so ‖(z − A)−1‖ ≥ s−1 > ε−1. Finally, to prove

1 ⇒ 2, suppose ‖(z − A)−1‖ > ε−1. Then (z − A)−1~u = s−1~v and consequently

z~v − A~v = s~u for some ~v, ~u ∈ CN each with norm equal to one and s < ε. It is

enough to show that there exists a matrix E ∈ CN×N with ‖E‖ = s and E~v = s~u,

for then ~v will be an eigenvector of A + E with eigenvalue z. In fact, E can be

taken to be a rank-1 matrix of the form E = s~u~w∗ for some ~w ∈ CN with ~w ∗~v = 1.

In our case, ‖·‖ is the 2-norm, and this is evident simply by taking ~w = ~v. Thus,

we have that the definitions are equivalent.

Pseudospectra is nice in that it is inherently visual. We can plot the level

curves defined by
{
z ∈ C

∣∣‖(A− z)−1‖ = 1
ε

}
for various values of ε > 0 and see how

different sized perturbations change the spectrum of our matrix. The following

example is the contour plot for the Grcar matrix defined by

G =



1 1 1 1

−1 1 1 1 1

−1 1 1 1 1
.

−1 1 1 1 1

−1 1 1 1

−1 1 1

−1 1


.

7

2 INTRODUCTION TO PSEUDOSPECTRA

G =



2 −1 −1

2 −1

2 −1
.

−1 1 1 1 1

−1 1 1 1

−1 1 1

−1 1


.

This matrix is an a nonsymmetric Toeplitz matrix with notoriously-sensitive eigen-

values [3]. We will look at other Toeplitz matrices later on in this paper, but we

bring up the Grcar matrix here because of the very beautiful pseudospectrum it

produces.

Contour Plot 3D Plot

Figure 3: Psuedospectra of a Grcar matrix with N = 32

See the appendix of code for a robust Mathematica function to produce

contour plots for any given matrix.

2.3 Properties of Pseudospectra

Before we begin our exploration of nonnormal matrices and their pseudospectra, it

is helpful to list some of the properties of pseudospectra that explain why we are

looking at nonnormal matrices.

8

2 INTRODUCTION TO PSEUDOSPECTRA

First, we say a matrix A ∈ CN×N is normal if it has a complete set of

orthogonal eigenvectors, that is, if it is unitarily diagonalizable,

A = UAU∗

where U is unitary. We have the following theorem regarding normal matrices.

Theorem 2.2. Let A ∈ CN×N and ‖·‖ = ‖·‖2. A is normal if and only if

σε(A) = σ(A) + ∆ε,

where ∆ε = {z ∈ C : |z| < ε}.

Proof. Suppose A is normal. Since we are using the 2-norm, it can be assumed

without loss of generality to be diagonal without any effect on norms, with diagonal

elements ajj equal to the eigenvalues λj. In this case the resolvent is also diagonal,

which implies that it satisfies the equation

∥∥(z − A)−1
∥∥ =

1

dist(z, σA)
.

Notice σ(A) + ∆ε = {z : z = z1 + z2, z1 ∈ σ(A), z2 ∈ ∆ε} which is equal to

{z : dist(z, σ(A)) < ε}. Thus, ‖(z − A)−1‖ > ε−1 for all z ∈ σ(A) + ∆ε, so

σε(A) ⊇ σ(A) + ∆ε. For the reverse inclusion, a proof can be found in [2, Theorem

2.2].

In the case of normal matrices, the pseudospectra is completely determined,

and simply equal to the union of disks of radius epsilon centered at the eigenvalues.

The following is a list of some other properties of pseudospectra.

9

2 INTRODUCTION TO PSEUDOSPECTRA

Theorem 1: Properties of Pseudospectra

Let A ∈ CN×N and ε > 0 be arbitrary. Then

1. σε(A) is nonempty, open, and bounded, with at most N connected com-

ponents, each containing one or more eigenvalues of A.

2. If ‖·‖ = ‖·‖2, then σε(A
∗) = σε(A).

3. If ‖·‖ = ‖·‖2, then σε(A1 ⊕ A2) = σε(A1) ∪ σε(A2).

4. For any c ∈ C, σε(A+ c) = c+ σε(A).

5. For any nonzero c ∈ C, σ|c|ε(cA) = cσε(A).

A proof for items two through five can be found in [2, Theorem 2.4], however

we will prove the first claim here after setting up some terminology. Let (X, d) be

a metric space. Then u : X → [−∞,∞) is called upper-semicontinuous (at x)

if lim supy→x u(y) ≤ u(x) for all x ∈ X. We also let D be an open set in C,

then a function u : D → [−∞,∞) is called subharmonic (at w) if it is upper-

semicontinuous and there exists p > 0 such that

u(w) ≤ Sru(w) =
1

2π

∫ 2π

0

u(w + reit)dt for 0 ≤ r < p.

These definitions are from potential theory and are important because subharmonic

functions follow the maximum principle.

Theorem 2.3 (Maximum Principle). Let u be a subharmonic function on a domain

D in C. Then if u attains a local maximum on D then u is constant.

Full definitions and proofs of these concepts can be found in [4]. We will use

this property in our proof by deriving a contradiction based on this principle.

Let us define the resolvent map for some matrix A ∈ CN×N as R : C\σ(A)→

10

2 INTRODUCTION TO PSEUDOSPECTRA

CN×N where R(z) = (A− z)−1. Notice that we have the following equality,

R(z1)−R(z2) = R(z1)R(z2)
−1R(z2)−R(z1)R(z1)

−1R(z2)

= R(z1)(A− z2)R(z2)−R(z1)(A− z2)R(z2)

= R(z1)((A− z2)− (A− z1))R(z2)

= R(z1)(z1 − z2)R(z2).

Rearranging this equation implies that

R(z) = [I − (z − z0)R(z0)]
−1R(z0)

for a fixed z0 ∈ C \ σ(A).

One tool we can use here is the Neumann series, which gives us the expansion

(1− A)−1 =
∑∞

n=0A
n for any matrix A with norm less than one [5, 30]. This is a

generalization of the geometric series in the real numbers. Notice that if we choose

z to be very close to z0, we have ‖(z − z0)R(z0)‖ = |z − z0|R(z0), and thus can

control the norm of this matrix to keep it less than one. Hence, we can rewrite 2.3

as

R(z) =
∞∑
n=0

(z − z0)nR(z0)
n+1

and thus, we conclude R(z) is holomorphic in z with Taylor series
(
d
dz

)n
R(z) =

n!R(z)n+1.

We use the Cauchy integral representation of R(z). If C is taken to be the

circle |z − z0| = r, the formula may be written

R(z0) =
1

2πi

∫ 2π

0

R(z0 + reiθ)dθ.

Consequently we apply the norm to both sides of the equation and get

‖R(z0)‖ =

∥∥∥∥ 1

2πi

∫ 2π

0

R(z + reiθ)dθ

∥∥∥∥
=

1

2π

∥∥∥∥∫ 2π

0

R(z + reiθ)dθ

∥∥∥∥

11

2 INTRODUCTION TO PSEUDOSPECTRA

and finally using the triangle inequality, we obtain

‖R(z0)‖ ≤
1

2π

∫ 2π

0

∥∥R(z + reiθ)
∥∥ dθ.

which is exactly the form satisfying the definition of a subharmonic function. Now

we are ready to prove the following theorem.

Theorem 2.4. The ε-pseudospectrum of A ∈ CN×N is nonempty, open, and

bounded, with at most N connected components each containing one or more eigen-

values of A.

Proof. The ε-pseudospectrum of A contains the spectrum of A, which is necessarily

nonempty. Thus, σε(A) is nonempty. The fact that the ε-pseudospectrum is open

is a direct result of the First Definition of Pseudospectra, namely that the ε-

pseudospectrum is the open subset of the complex plane bounded by the ε−1 level

curve of the norm of the resolvent.

Another way to prove this is to use a theorem from real analysis that says

for any function, f : X → Y , that is continuous on X, the inverse function applied

to an open set is open. We have the resolvent map as a continuous function from

the complex plane with holes at the spectrum of A to the real numbers. The ε-

pseudospectrum is just the inverse resolvent map of the open set (1/ε,∞). Thus,

the ε-pseduospectrum is open in C \ σ(A).

Now suppose σε(A) has an open connected component that does not contain

an eigenvalue of A. Let us call this component S. For all s ∈ S, we have

‖(A− s)−1‖ > 1/ε. Since S is open and does not contain any eigenvalues of A, the

maximum value of S must be contained on its interior. Let s0 be the maximum

point in S such that ‖(A− s0)−1‖ ≥ ‖(A− s)−1‖ for all s ∈ S. However, this

violates the maximum principle for subharmonic functions. Thus, our inequality

implies that the norm of the resolvent is constant, and we have σε(A) = C. But

since σ(A) is nonempty and contained in the complex numbers, we have σ(A) ⊂ S,

a contradiction. Thus, each connected component of σε(A) must contain and

eigenvalue. Since there are at most N distinct eigenvalues, σε(A) has at most

N connected components each containing one or more eigenvalues of A.

This property of psuedospectra is quite apparent in 3D-plots. Looking at

Figure 4 we can see that the pseudospectra forms tubes around the eigenvalues of

12

2 INTRODUCTION TO PSEUDOSPECTRA

the matrix since the norm of the resolvent for an eigenvalue is defined as infinity.

If we think about taking level curves in this plot, we can see that for smaller values

of epsilon we will get three connected components centered at the eigenvalues, and

as we let epsilon increase, the components merge together.

Figure 4: 3D plot for a 3× 3 matrix

2.4 General Bounds for Diagonalizable Matrices

We begin here the characterization of the behavior of nonnormal, diagonalizable

matrices. Write A = V DV −1. We define the condition number of V as

κ(V) = ‖V ‖
∥∥V −1∥∥ =

smax(V)

smin(V)

where smax(V) and smin(V) are the maximum and minimum singular values of V ,

respectively. One caution is that there is ambiguity in the condition number, as V is

not uniquely determined. The condition number becomes unique if the eigenvalues

are distinct and the columns of V are normalized by ‖vj‖ = 1. Van Der Sluis

showed that this choice may not necessarily be the one that minimized κ(V), but

this choice exceeds the minimal value by at most a factor of
√
N [6].

Notice κ(V) is necessarily greater than or equal to 1. Moreover, κ(V) = 1

if and only if A is normal [7]. The importance of the condition number is evident

in the following theorem that gives an upper and lower bound on the size of the

pseudospectrum of a nonormal, diagonalizable matrix.

13

2 INTRODUCTION TO PSEUDOSPECTRA

Theorem 2.5 (Bauer-Fike). Let A ∈ CN×N and let A be diagonalizable, such that

A = V DV −1. Then for each ε > 0,

σ(A) +B(0, ε) ⊆ σε(A) ⊆ σ(A) +B(0, εκ(V))

where

κ(V) = ‖V ‖
∥∥V −1∥∥ =

smax(V)

smin(V)
.

The original proof for this can be found in [8]. We can see that the lower

bound is a union of balls of radius epsilon around the eigenvalues of A, or exactly

the pseudospectrum if A was normal. Clearly nonnormal matrices are much more

sensitive to perturbations, and in later sections we will relax the restriction that

our matrix is diagonalizable and work to find other upper and lower bounds for

these other classes of matrices.

14

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

3 Pseudospectra of Nonnormal Matrices

Now that we have an understanding of properties of pseudospectra and the knowl-

edge that normal matrices have completely determined pseudospectrum, we can

turn towards understanding nonnormal matrices. Most of the work being done is

finding upper and lower bounds for the pseudospectra; if we can find better bounds

for pseudospectra, then we can approximate things like the radius of pseudospectra

and identify special cases. Serval types of nonnormal matrices are well understood,

but there is no unifying theory. In this section, we will look at serval types of

nonnormal matrices and their resulting pseudospectrum.

3.1 Circulant Matrices

We begin our exploration with circulant matrices. A matrix C ∈ CN×N is circulant

if it has the form

C =



c0 cn−1 . . . c2 c1

c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. cn−1

cn−1 cn−2 . . . c1 c0


.

Circulant matrices are nice. One amazing property of circulant matrices is that

the eigenvectors are always the same. The eigenvalues are different for each C, but

since we know the eigenvectors they are easy to diagonalize. We can actually see

one eigenvector right away:

~v0 =


1

1
...

1

 .

This is an eigenvector because multiplying C~v0 simply sums each row of C. But

since each row of C contains the same entries, we have

C~v0 = (c0 + c1 + · · ·+ cn−1)︸ ︷︷ ︸
λ0

~v0

15

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

and thus, λ0 is an eigenvalue of C. So we have one eigenvalue, but what about the

others? The others turn out to be very easy to write down thanks to a very special

value: a primitive roots of unity :

ωn = e
2πi
n

The quantity ωn has the property that ωnn = e2πi = 1 = ω0
n, but no smaller power

equals one. Therefore, ωj+nn = ωjn, so the exponents are periodic. Using this

quantity, we can write the equation for the k-th eigenvector of C (k = 0, 1, . . . , n−1):

~vk =



ω0k
n

ω1k
n

ω2k
n
...

ω
(n−1)k
n


and we have the corresponding eigenvalues:

λk = c0 + cn−1ω
k
n + cn−2ω

2k + · · ·+ c1ω
n−1.

Let’s see why this works. Let ~y = C~vk. The the `-th component of ~y is

~y` =
n−1∑
j=0

cj−`ω
jk
n = ω`kn

n−1∑
j=0

cj−`ω
(j−`)k
n

Notice the remaining sum is now independent of ` because both cj and ωjn are

periodic. In other words, moving from j to j − ` only re-arranges the numbers

being summed (a circular shift, hence the name of the matrix), so you get the same

sum for each component of ~y. Thus,

C~vk = λk~vk, where λk =
n−1∑
j=0

cjω
jk
n .

Because of the periodic nature of the roots of unity, the eigenvectors are

independent and form an orthonormal basis, implying circulant matrices are nor-

mal. Because of this fact, the pseudospectra of circulant matrices are completely

16

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

described. However, circulant matrices are important to our later discussions. First,

circulant matrices are a special type of Toeplitz matrix, and we will see more

Toeplitz matrices in the next section.

The other reason will come up later when we look at error matrices. When

choosing error matrices to look at, we want to either be able to control the norm

of our chosen error matrix, or control the eigenvalues of our perturbed matrix.

Thus, we will look at circulant matrices since they give us the ability to control

eigenvalues.

3.2 Triangular Toeplitz Matrices

We begin by defining our matrix A as an upper triangular Toepliz matrix defined

by coefficients ak ∈ C, 0 ≤ k ≤ N − 1 ≤ ∞,

A =



a0 a1 a2 · · · aN−1

a0 a1
. . .

...

a0
. . . a2
. . . a1

a0


and let f(z) be the symbol of this matrix, defined by

f(z) =
N−1∑
k=0

akz
k.

Because the matrix is triangular, the spectrum of A is well understood and simply

equal to the terms on the diagonal. In other words,

σ(A) = f({0}) = {a0}.

So we have the characterization of the spectra, but what can we say about the

pseudospectra? Work done by Reichel and Trefethen has established an upper and

lower bound for these triangular Toeplitz matrices [9]. While the theorem is stated

for upper triangular Toeplitz matrices, the same results hold for the lower triangular

case because the identity σε(A) = σε(A
T) that holds for any matrix A and any ε.

17

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

Theorem 3.1. Let AN be an N ×N (nondiagonal) triangular Toeplitz matrix with

entries {ak} and symbol fN(z). Let ∆ be the closed unit disk and ∆r be the closed

disk of arbitrary radius r. If cN and r are defined by

cN =
∑N−1

k=1 |ak| > 0, r =
(
ε
cN

)1/N
,

then for any ε ≥ 0,

fN(∆r) ⊆ σε(AN) ⊆ fN(∆) + ∆ε.

In most cases we are taking ε � cN , and thus r < 1. This means that

establishing the lower bound the more important part of this theorem since the

upper bound is a fixed value plus a small epsilon radius, while the lower bound

essentially depends of epsilon. We will prove the first inclusion of this theorem.

Proof. To prove the first inclusion, our goal is to construct a pseudo-eigenvector

and use Definition 3 to show containment in the epsilon-pseudospectrum. Given

ε > 0, let r be defined as in 3.1. Now, given any λ ∈ fN(∆r), let λ = fN(z) for some

z ∈ ∆r and define u = (1, z, z2, . . . , zN−1)T . Then we have the following equality

(λI − AN)u = zN



0

aN−1 ·
... · ·
a3 · ·
a2 a3 · ·
a1 a2 a3 · · · aN−1 0


u.

This becomes clear when you substitute λ = fN(z) =
∑N−1

k=o akz
k. Then the algebra

works out nicely. The matrix on the right hand side has its norm bounded by cN .

This implies
‖(λI − AN)u‖

‖u‖
≤ |z|NcN ≤ rNcN =

ε

cN
cN = ε

so u is an ε-pseudoeigenvector of AN and thus λ ∈ σε(AN) by Definition 3. Hence

we have the inclusion fN(∆r) ⊆ σε(AN).

3.3 The Jordan Block

Now we want to consider the simplest possible case of triangular Toeplitz matrices

(and probably the simplest possible nonnormal matrix), the Jordan block, defined

18

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

by the N ×N matrix

JN =



0 1

0 1

0
. . .
. . . 1

0


.

The Jordan block has the corresponding symbol f(z) = z, which we will use when

applying theorem 3.1 to find a lower bound for the pseudospectra. However, we first

must note one curious thing about the pseudospectra of the Jordan block; despite

being a nonnormal matrix, the pseudospectrum appears to be a disk.

Figure 5: Level curves for the pseudospectrum of the 4× 4 Jordan block

Indeed, it is the case that the pseudospectrum of the Jordan block is a disk.

Theorem 3.2. The ε-pseudospectrum of a Jordan block JN is a disk.

To prove this, we need the following lemma.

Lemma 3.3. Let A,B be n× n matricies with complex coefficients. If there exists

a unitary matrix, U , such that A = UBU∗, then ‖A‖ = ‖B‖.

The proof of this lemma relies on the property of unitary matrices that they

19

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

preserve norms; in other words, ‖U‖ = 1. Hence we have the following equations:

‖A‖ = ‖UBU∗‖ ≤ ‖U‖ ‖B‖ ‖U∗‖ = ‖B‖

‖B‖ = ‖U∗AU‖ ≤ ‖U∗‖ ‖A‖ ‖U‖ = ‖A‖

Thus, ‖A‖ = ‖B‖. Now we proceed with the proof of theorem 3.2.

Proof. To prove σε(JN) is a disk, we will first prove that it is rotation invariant,

then prove any line drawn between the eigenvalue and some λ ∈ σε(JN) is in the

pseudospectrum. We will first show that if λ ∈ σε(JN), then eiθλ ∈ σε(JN). First,

consider the matrix

S =


eiθ

e2iθ

. . .

eniθ


for any θ ∈ [0, 2π). Note that this matrix is unitary since

SS∗ = diag(|eiθ|2, |e2iθ|2, . . . , |eniθ|2) = I.

More importantly, we have that SJNS
∗ = eiθJN . In other words, S rotates JN by

theta.

Suppose we have some λ ∈ σε(JN). Then there exists some E with ‖E‖ < ε

such that λ ∈ σ(J + E) by Definition 2 of pseudospectra. Thus we have some

corresponding eigenvector, ~v, such that

(J + E)~v = λ~v.

Multiplying by eix, we obtain

(eixJ + eixE)~v = eixλ~v

(J̃ + eixE)~v = (eixλ)~v.

Notice that ‖eixE‖ = |eix| ‖E‖ = ‖E‖ < ε. Thus, eixλ ∈ σε(J̃), and since σε(J) =

σε(J̃), we have eixλ ∈ σε(J) as desired.

Now that we have rotation invariance, we must prove that every point inside

the disk is also in the pseudospectrum. Suppose this is not the case; in other words,

20

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

suppose for some λ ∈ σε(JN) there exists some t ∈ (0, 1) such that tλ 6∈ σε(JN). The

we have the sets U = D(0, |tλ|) and V = R2\D(0, |tλ|. We have that U ∩σε(J) 6= ∅
since the eigenvalue zero lies in this set. Similarly, V ∩ σε(J) 6= ∅ since λ lies in

this set. Hence we have σε(J) = (U ∩ σε(J)) ∪ (V ∩ σε(J)), which implies that the

ε-pseudospectrum of J is not connected, a contradiction of 2.4.

Thus, the pseudospectrum of a Jordan block is a disk.

When we apply Theorem 3.1 to our Jordan block, we have cN = 1 and

r = ε1/N , thus getting a lower bound on the pseudospectral radius of rN(ε) = ε1/N .

The question now is can we do better? One way at getting better bounds is to use

classes of error matrices, E, where we can both control the norm and come up with

characteristic equations for JN + E that are easy to solve. Consider the matrix

E =



0 ε

0 ε

0
. . .
. . . ε

ε 0


then ‖E‖ = ε. Then for any λ ∈ σ(JN + E), we have

0 = det(λI − (JN + E)) = (−1)NλN + (−1)N+1ε(1 + ε)N−1

After some algebra, we solve for lambda and get

λ = N
√
ε(1 + ε)N−1 (3.1)

so we have a better lower bound for the pseudospectral radius, and have proved the

following theorem [7].

Theorem 3.4 (Better Lower Bound). Let J be an N ×N Jordan block. Then

B(0, N
√
ε(1 + ε)N−1) ⊆ σε(JN).

In a later section, we will explore the radius numerically using software and

see how well this lower bound fares against the numbers we find.

21

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

3.4 The 2× 2 Jordan Block

We will start by looking at the smallest Jordan block, the 2 × 2 case. What is

notable about this case is that we have a closed form for the norm of the matrix.

Let A =

(
a b

c d

)
, with a, b, c, d ∈ C. Let smax denote the largest singular

value of A.

Then,

‖A‖2 = smax (3.2)

= largest eigenvalue of A∗A (3.3)

=
Tr(A∗A) +

√
Tr(A∗A)2 − 4 det(A∗A)

2
(3.4)

Letting ρ = |a|2 + |b|2 + |c|2 + |d|2, we can expand the norm as

‖A‖2 =
1

2

(√
ρ2 − 4

(
|a|2|d|2 + |b|2|c|2 − (adbc+ adbc)

)
+ ρ

)
.

This formula allows us to explicitly compute the ε-pseudospectrum of the 2 × 2

matrices and the following proposition.

Proposition 3.5. Let A be any non-diagonalizable 2× 2 matrix, and let λ denote

the eigenvalue of A. Write A = V JV −1 where

V =

(
a b

c d

)
, a, b, c, d ∈ C, and J2 =

(
λ 1

0 λ

)
.

Then σε(A) is exactly a disk. More specifically, given any ε,

σε(A) = B(λ, |k|)

where

|k| =
√
Cε+ ε2 and C =

|a|2 + |c|2

|ad− bc|
. (3.5)

A full proof of this proposition can be found in [7], but is essentially a direct

calculation of ‖(z − A)−1‖ using equation 3.4. When we apply this proposition to

our 2×2 Jordan block we have V is the identity matrix so a = d = 1 and b = c = 0,

22

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

and thus plugging into 3.5 we get that

|k| =
√
ε2(1− 0)(1− 0) + ε|1− 0|(1 + 0)

|1− 0|
=
√
ε+ ε2.

Hence,

σε(J2) = B(λ,
√
ε+ ε2).

Notice that this is exactly the same radius proposed by Theorem 3.4 when N = 2.

However, this is a special case, and we will see in the next section that the Better

Lower Bound is only the exact radius in the 2× 2 case.

3.5 The 3× 3 Jordan Block

In this section we consider the pseudospectra of the 3× 3 Jordan block. Unlike the

2×2 Jordan block, there is no closed formula for the norm, so our investigation will

focus on finding lower bounds on the ε-pseudospectral radius. Using the formula

established in Theorem 3.4 we have the disk of radius

r = 3

√
ε(1 + ε)(3)−1 =

3
√
ε+ 2ε2 + ε3

contained in the ε-pseudospectrum, our current best lower bound. Here, we find

another type of error matrix to produce a lower bound on the ε-pseudospectra.

Lemma 3.6. Let

E =

j ν 0

0 k ν

ν 0 `


where j = µ1/3, k = −eiπ/3µ1/3, and ` = e2iπ/3µ1/3. We also require µ > 0 and

ν > 0.

Then ‖E‖ = µ1/3 + ν and for ‖E‖ < ε, we have

B(0, 3
√
µ+ ν(ν + 1)2) ⊆ σε(A)

Proof. Let

E =

j ν 0

0 k ν

ν 0 l


23

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

where j = µ1/3, k = −eiπ/3µ1/3, and l = e2iπ/3µ1/3. We also require µ > 0 and

ν > 0. Then we have the following equation for the norm of E:

‖E‖2 = largest eigenvalue of E∗E

= largest eigenvalue of

 µ2/3 + ν2 µ1/3ν e2iπ/3µ1/3ν

µ1/3ν µ2/3 + ν2 e2iπ/3µ1/3ν

−eiπ/3µ1/3ν −eiπ/3µ1/3ν µ2/3 + ν2

 .

We get the characteristic polynomial

0 = det(E∗E − λI) = (µ2/3 − µ1/3ν + ν2 − λ)2(µ2/3 + 2µ1/3ν + ν2 − λ)

Thus we have the following two solutions for lambda,

λ = µ2/3 − µ1/3ν + ν2

λ = µ2/3 + 2µ1/3ν + ν2 = (µ1/3 + ν)2

We now have ‖E‖ = max(
√
µ2/3 − µ1/3ν + ν2, µ1/3 +ν), and since µ > 0 and ν > 0

we have ‖E‖ = µ1/3 + ν.

Choosing µ and ν such that ‖E‖ < ε, we can use the second definition of

pseudospectra to say σ(J3 +E) ⊆ σε(J3). Looking at the characteristic polynomial

of J3 + E, we have

0 = det(J3 + E − λI)

= det

j − λ ν + 1 0

0 k − λ ν + 1

ν 0 l − λ


= (j − λ)(k − λ)(l − λ) + ν(ν + 1)(ν + 1)

= µ− λ3 + ν(ν + 1)2

λ = 3
√
µ+ ν(ν + 1)2

Thus, we get that B(0, 3
√
µ+ ν(ν + 1)2) ⊆ σε(J3). This method gives us a classes

of lower bounds.

24

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

For example, let 0 < k < ε and α ≥ 3. Let µ = kα and ν = k − kα/3. We

will call this a perturbation of type A. For small values of epsilon, we have that

‖E‖ = kα/3 + (k − kα/3) = k < ε. This type A perturbation gives us the following

equation for the pseudospectral radius:

r3(ε) ≥
3
√
ε3 − εα/3 + 2ε2α/3 + 2ε2 − 3ε(6+α)/3 + ε− 4ε(3+α)/3 + 3ε(3+2α)/3.

The interesting thing about this expansion is the different equations yielded by

changing our tuning parameter, α. The following table gives us a few examples of

the expansions we obtain with different values of α

α Lower Bound of the Radius Cubed

3 ε3

4 ε− ε4/3 + 2ε2 − 4ε7/3 + 2ε8/3 + ε3 − 3ε10/3 + 3ε11/3

5 ε− ε5/3 + 2ε8/3 + ε3 + 2ε10/3 − 3ε11/3 + 3ε13/3

6 ε+ ε2 − 3ε3 − ε4 + 3ε5

The accompanying plot compares these expansions with the Better Lower

Bound for a 3× 3 Jordan block 6.

alpha=3

alpha=4
alpha=5

alpha=6

Better Lower Bound

0.1 0.2 0.3 0.4 0.5 0.6 0.7
eps

0.2

0.4

0.6

0.8

1.0

r(eps)

Figure 6: A comparison of Lower Bounds

In every case the Better Lower Bound is still greater than our new expan-

sions. As α → ∞, we have µ → 0 and ν → k so we end up with the same radius

as what we found in the Better Lower Bound. This trend is even more explicit

when we zoom in closer to zero. In Figure 7 we can see how increasing alpha brings

us closer and closer to our original lower bound. What is interesting about these

expansions is that we get epsilon raised to fractional powers when α is not a multiple

of three. We will see in the next section that fractional exponents may be required

25

3 PSEUDOSPECTRA OF NONNORMAL MATRICES

to capture the exact nature of the pseudospectral radius. Thus, error matrices with

two parameters such as this type A error that can balance exponents should be

explored further to continue to improve upon the best known lower bound.

alpha=3

alpha=4

alpha=5

alpha=6

Better Lower Bound

0.05 0.10 0.15 0.20
eps

0.05

0.10

0.15

0.20

0.25

0.30

r(eps)

Figure 7: Comparison at epsilon close to zero

26

4 COMPUTATIONAL ANALYSIS OF PSEUDOSPECTRAL RADIUS

4 Computational Analysis of Pseudospectral Ra-

dius

Now that we understand classes of lower bounds on the ε-pseudospectra for different

sized Jordan blocks, we will use computer software to explore pseudospectra and

calculate the radius for the different sized Jordan blocks. Then we can compare

our numerical results with the lower bounds we found earlier and see how well they

approximate the radius.

4.1 Radius of the Jordan Block

We know the case N = 2 has an exact solution for the radius thanks to the

closed-form equation for ‖(z − J2)−1‖. Namely, we obtain the solution σε(J2) =

B(0,
√
ε− ε2). It is important to keep this equation in mind because we can use it

as a litmus test for any numeric analysis we run; we must produce this radius with

our analysis or else it is a bad test. For higher values of N , there is no closed-form

equation for the norm. However, from [10] we have the following:

lim
ε→0

rN(ε) = N
√
ε. (4.1)

Equivalently, we can take the Nth power of each side and say rN(ε)N = ε as ε→ 0.

The N = 2 case and theorem 3.4 show us there may be higher order terms in epsilon

that produce better approximations of the radius. We want to explore the Puiseux

series for rN(ε). This definition follows from [11, p. 130]

Definition: Puiseux Series

The Puiseux series is a generalization of power series that allow for negative

and fractional exponents. If K is a field then we say the field of Puiseux series

with coefficients in K is the set of expressions of the form

f =
∞∑

k=k0

ckx
k/N

where N is a positive integer and k0 is an arbitrary integer.

27

4 COMPUTATIONAL ANALYSIS OF PSEUDOSPECTRAL RADIUS

A formal Puiseux series is a power series with rational exponents which share some

natural number N as their common denominator. We have the componentwise

addition, and the usual convolution product, which is defined by

(∞∑
k=k0

ckx
k/N
)(∞∑

k=k0

dkx
k/N
)

=
∞∑
r=0

(r∑
s=0

csdr−s
)
xk/N .

The classic motivation for Puiseux series comes from algebraic geometry with

application in tropical geometry. When working over an algebraically closed field

such as the complex numbers, Puiseux series are also algebraically closed [12].

We know the first term in the Puiseux series for rN(ε)N is ε. Using an

arbitrary expression for the next unknown term we can write

rN(ε)N = ε+ cεp

for some c, p ∈ R since we know the pseudospectra is a disk, and thus will have a

real-valued radius. By subtracting away the known terms and rearranging, we get

the following equation:

log(rN(ε)N − ε) = log(cεp) (4.2)

= log(c) + p log(ε) (4.3)

By taking various values of epsilon, we can fit a linear polynomial using the log of

epsilon and the log of the terms we have already solved for and the slope of the

line will give us the value for p and the exponential of the intercept will give us the

value for c. After having solved these terms, we fill in the values for c and p, and

repeat the process on the next unknown term.

Let eps be a vector of epsilon values, radEps be the vector of corresponding

radii, n be the dimension of the Jordan block, and knownTerms be an N × 2 matrix

with known constants in the first column and known powers in the second column.

Then we produce the following MATLAB algorithm:

28

4 COMPUTATIONAL ANALYSIS OF PSEUDOSPECTRAL RADIUS

Algorithm 1: findNextPower

Input: eps, radEps, n, knownTerms

Result: (c, p)

x = log(eps);

d = size(knownTerms);

knownSum = zeros(1, length(eps));

for i = 1:d(1)

tempEps = arrayfun(@(x) x^(knownTerms(i,2)), eps);

knownSum = knownSum + knownTerms(i,1)*tempEps;

end

radPower = arrayfun(@(x) x^n, radEps);

y = log(radPower - knownSum);

fit = polyfit(x,y,1);

p = fit(1);

c = exp(fit(2));

We will walk through this algorithm step-by-step for some A ∈ CN×N . First

suppose we only have one value for epsilon, ε1, and the radius for the corresponding

epsilon-pseudospectrum, rN(ε1). Suppose we also have the first d terms of the

Puiseux series for the radius,

r̃N(ε)N =
d∑
i=0

ckiε
ki/N .

The algorithm calculates two values: log(ε1) and log(rN(ε1)
N− r̃N(ε1)

N). From our

equation above, 4.3, we can see that in the linear trend for the log of the Pusieux

series log(ε1) acts as our independent variable and log(rN(ε1)
N − r̃N(ε1)

N) is our

dependent variable. Now suppose we have many epsilon values, ε1, ε2, . . . , εm, and

their corresponding radii, rN(ε1), rN(ε2), . . . , rN(εm). The algorithm calculates and

stores log(εi) and log(rN(εi)
N − r̃N(εi)

N) for each i ∈ {1, 2, . . . ,m}. Now we fit a

line using these points; the polyfit function in MATLAB finds a coefficient and

intercept for a best-fit line that minimizes the squared distance of each point to

the line. Once we raise each side of our linear equation to an exponential, we end

up with the exponential of our linear intercept as the next coefficient in the series,

29

4 COMPUTATIONAL ANALYSIS OF PSEUDOSPECTRAL RADIUS

and our linear coefficient becomes our next exponent in the Puiseux series. These

are the terms returned by the function.

The Eigtool package in MATLAB provides functions for computing the ε-

pseudospectral radius. One issue with the algorithm is that the returned coefficients

are the result of fitting a line to a sequence of points that are only linear as

epsilon approaches zero. The nice thing is that the algorithm self-corrects; if some

coefficient, say ci corresponding to the exponent pi, is incorrect, then the algorithm

will return a new coefficient and the same exponent pi the next time we run the

algorithm.

Consider an example of how the algorithm functions finding the second term

in the radius for σε(J3). We want to find c and p in r3(ε)
3 = ε + cεp. Let ε > 0,

and rε = r3(ε) be the corresponding pseudospectral radius. Using these values, we

let y = log(rε − ε) and x = log(ε). Notice that this matches the form of equation

(2.3), or y = ax + b where a = p and b = log(c). Record the values for x and y

then repeat this process for a number of different ε values. Now we use MATLAB

to fit a linear polynomial to our set of generated points. The coefficient, a, for x

will be p in our formula and the intercept, b, will be log(c), or eb = c. Running this

process gives us the values c = 1 and p = 5/3. Below is a plot of the linear trend

the calculated points for around 20 values of epsilon.

Using this algorithm on various sized Jordan blocks, we get the following

radii:

30

4 COMPUTATIONAL ANALYSIS OF PSEUDOSPECTRAL RADIUS

Jk Radius of σε(Jk) as ε→∞

J2 r2(ε)
2 = ε+ ε2

J3 r3(ε)
3 = ε+ ε5/3 + 5

3
ε7/3 + 1

3
ε9/3 +O(ε11/3)

J4 r4(ε)
4 = ε+ ε6/4 + 6

4
ε8/4 + 21

8
ε10/4 +O(ε12/4)

J5 r5(ε)
5 = ε+ ε7/5 + 7

5
ε9/5 + 56

25
ε11/5 +O(ε13/5)

J6 r6(ε)
6 = ε+ ε8/6 + 8

6
ε10/6 + 2ε12/6 +O(ε14/6)

This table summarizes many of the results from this paper. These numbers

are new in the literature and have several interesting patterns.

Let us compare these numbers to the Better Lower Bound we found in 3.4.

Recall, the bound says

rN(ε)N ≥ ε(1 + ε)N−1.

Looking at the right hand side of the equation, we can expand using the binomial

theorem and write

ε(1 + ε)N−1 = ε

((
N − 1

0

)
ε0 +

(
N − 1

1

)
ε1 + . . .

)
= ε+ (N − 1)ε2 + . . .

Hence, the second term in epsilon in every expansion for this bound is ε2. The

numerical tests suggest that this exponent is too large; in our tests, we found that

the second term in epsilon is ε(N+2)/N and N+2
N

< 2 for all N > 2. Since we take ε

to be small, the Better Lower Bound decays too quickly. From these numbers, we

state the following proposition.

Proposition 4.1. For an N×N Jordan block, JN , the radius of the ε-pseudospectrum

is described by the polynomial

rN(ε)N =
k∑
i=0

ciε
N+2i
N

where ci, k ∈ R and k is an integer.

Besides the exponents, there seems to be a pattern in the coefficients. The

coefficient for the third term in the expansion is always N+2
N

. Further, if we exclude

the expansion for r3(ε)
3, then the coefficient for the fourth term is N+2

N
· N+3

N
. There

appears to be structure contained within these expansions, waiting to be unlocked.

31

4 COMPUTATIONAL ANALYSIS OF PSEUDOSPECTRAL RADIUS

The big O notation indicates where the algorithm breaks down because of

numerical precision issues. However, having the a few terms in each equation give

us a target when finding classes of perturbations that get us close lower bounds on

the pseudospectral radii. One thing that inspires hope in these numbers is that the

algorithm does not return a valid number for the third term in the Puiseux series

for the case where N = 2.

To prove this, we ideally want to come up with an error matrix or pseu-

doeigenvector for the Jordan blocks that gives us a pseudospectral radius that

matches this kind of expansion. More work should be done figuring out the nature

of these Puiseux series and the expansion coefficients.

4.2 Upper Bound on the Radius of the Jordan Block

So far, we have focused primarily on lower bounds for the pseudospectrum of the

Jordan block, but now we will consider bounding the pseudospectrum from above.

Right now, our best upper bound is the one established in Theorem 3.1. Since the

Jordan block has symbol f(z) = z, the upper bound is

f(∆) + ∆ε = ∆ + ∆ε = ∆1+ε

or the ball centered at the origin with radius 1 + ε. Clearly this is a bad upper

bound since one dominates the radius for our small values of epsilon. We can use

the results from the previous section to establish a better upper bound for the

pseudospectra.

If Proposition 4.1 is correct, then we should be able to find an upper bound

that depends on epsilon and contains the pseudospectra of our Jordan blocks.

Namely, if rN(ε)N = ε + ε(N+2)/N + O(ε(N+4)/N), then for small values of epsilon,

we should have rN(ε)N < ε+ε(N+1)/N . We explore this upper bound stochastically.

In the plot below, we look at the 3 × 3 Jordan block. Two circles are drawn: the

red one has radius 1 + ε and the blue has radius
N
√
ε+ ε(N+1)/N . We then generate

points in the pseudospectrum by creating error matrices Ei for i = 1, 2, ...2000 with

‖Ei‖ ≤ 0.1. We then calculate the eigenvalues of J3 + Ei and plot them on the

graph. We see that every resulting point is contained in within our blue circle.

32

4 COMPUTATIONAL ANALYSIS OF PSEUDOSPECTRAL RADIUS

Figure 8: Upper Bounds for σε(J3)

A similar story is told when we vary the value of epsilon. The following plots

show the same containment exists even when we take random values for epsilon. In

each case the ball of radius
N
√
ε+ ε(N+1)/N contains all the points in our generated

pseudospectrum.

Figure 9: Upper Bounds for σε(J3), Varying ε

And finally we have the analogous plots for the Jordan blocks of sizes N =

33

4 COMPUTATIONAL ANALYSIS OF PSEUDOSPECTRAL RADIUS

4, 5, 6, 7. Again, the blue circles contain the pseudospectra.

Figure 10: Upper Bounds for σε(JN), Varying N

As another check, we plot a lower bound and our new upper bound on

the same graph for the 3 × 3 Jordan block, J3. For the upper bound, we still

use B(0,
3
√
ε+ ε(N+1)/N). For our lower bound, we take the first two terms of our

proposed Puseiux series for the pseduospectral radius of J3, giving us the lower

bound B(0,
3
√
ε+ ε(N+2)/N). In the following plot, we let ε = 0.2 and take 20,000

random perturbations. The points in the generated pseudospectrum with absolute

value greater than the lower bound are plotted in red (although some appear to be

contained in the lower bound because of graphical precision issues). Several values

clearly break through this lower bound, but all are contained within our proposed

upper bound.

34

4 COMPUTATIONAL ANALYSIS OF PSEUDOSPECTRAL RADIUS

Figure 11: Lower and Upper Bounds for σε(J3)

This stochastic examination of the upper bound provides further evidence

for 4.1, and leads us to another proposition.

Proposition 4.2. Let JN be an N ×N Jordan block. Then

σε(JN) ⊆ B(0,
N
√
ε+ ε(N+1)/N).

This proposition is left as an area for future research. Of course, coming

up with the exact radius is the ultimate goal. However, these propositions provide

guidance for the types of upper and lower bounds we want to achieve, and numerical

results to support the proposals. Hopefully these numbers provide a beacon for

further research and thought.

35

5 References

[1] N. J. Higham, “Review of“spectra and pseudospectra: The behavior of

nonnormal matrices and operators”, by lloyd n. trefethen and mark embree.

princeton university press, princeton, nj, usa, 2005.,” Bull. Amer. Math. Soc.,

vol. 44, no. 2, pp. 277–284, 2007.

[2] L. N. Trefethen and M. Embree, Spectra and pseudospectra: the behavior of

nonnormal matrices and operators. Princeton University Press, 2005.

[3] J. F. Grcar, “Matrix stretching for linear equations,” arXiv preprint

arXiv:1203.2377, 2012.

[4] C. Kuehn, “Introduction to potential theory via applications,” arXiv preprint

arXiv:0804.4689, 2008.

[5] T. Kato, Perturbation theory for linear operators, vol. 132. Springer Science

& Business Media, 2013.

[6] A. Van der Sluis, “Condition numbers and equilibration of matrices,”

Numerische Mathematik, vol. 14, no. 1, pp. 14–23, 1969.

[7] F. Gong, O. Meyerson, J. Meza, M. Stoiciu, and A. Ward, “Explicit bounds

for the pseudospectra of various classes of matrices and operators,” Involve, a

Journal of Mathematics, vol. 9, no. 3, pp. 517–540, 2016.

[8] F. L. Bauer and C. T. Fike, “Norms and exclusion theorems,” Numerische

Mathematik, vol. 2, no. 1, pp. 137–141, 1960.

[9] L. Reichel and L. N. Trefethen, “Eigenvalues and pseudo-eigenvalues of toeplitz

matrices,” Linear algebra and its applications, vol. 162, pp. 153–185, 1992.

[10] G. Beek, “Spectra of finite and infinite jordan blocks,” Master’s thesis,

University of Twente, 2015.

[11] K. Knopp, Theory of functions,. New York: Dover publications, 1945.

36

[12] F. Aroca, G. Ilardi, and L. López de Medrano, “Puiseux power series solutions

for systems of equations,” International Journal of Mathematics, vol. 21,

no. 11, pp. 1439–1459, 2010.

37

6 APPENDIX OF CODE

6 Appendix of Code

Note that Multiprecision Computing Toolbox for MATLAB (available at advanpix.com)

is required to run these scripts.

To download the scripts, visit https://github.com/abbank92/AppendixCode

plotEigLevels.nb

(*Function for plotting pseudospectra level curves*)

(*(c) Alex Bank 2020*)

(*Parameters xmin, xmax, ymin, and ymax define the plot limits*)

plotEigsLevels[mat_, xmin_, xmax_, ymin_, ymax_] :=

Module[{eigs, c, n},

eigs = Eigenvalues[N[mat]];

With[{c = Norm[mat], n = Length[mat]},

ContourPlot[-c Log10[

First[SingularValueList[

mat - SparseArray[Band[{1, 1}] -> x + I y, {n, n}], -1,

Method -> "Arnoldi", Tolerance -> 0]]], {x, xmin, xmax}, {y,

ymin, ymax}, AspectRatio -> Automatic,

Contours -> Range[1, 6, 1/2], ContourShading -> None,

ContourStyle -> Black,

Epilog -> {Directive[Black, AbsolutePointSize[5]],

Point[ReIm /@ eigs]}]]]

(*Example usage using Grcar matrix with N=32*)

grcar[r : _Integer?Positive : 3, n_Integer?Positive] :=

SparseArray[{{j_, k_} /; j == k + 1 :> -1, {j_, k_} /;

0 <= k - j <= r :> 1}, {n, n}]

mat = grcar[32];

plotEigsLevels[mat, -2, 4, -4, 4]

(*The 4x4 Jordan Block*)

38

6 APPENDIX OF CODE

mat2 = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {0, 0, 0, 0}};

plotEigsLevels[mat2, -1, 1, -1, 1]

39

6 APPENDIX OF CODE

numericalTestMP.m

This is the script that computes the Puiseux series expansion for each Jordan block

%% Function Test

% Set up a bunch of epsilon values

low = mp(’10e7’);

high = low*100;

inc = 990000;

smallSeq = low:inc:high;

eps = arrayfun(@(x) 1/x, smallSeq);

%% First Jacobi block... k = 3

k = 3;

J3 = mp([0 1 0; 0 0 1; 0 0 0]);

% Get corresponding radii

radEpsJ3 = mp(zeros(1, length(eps)));

for ind = 1:length(eps)

radEpsJ3(ind) = findradiusMP(J3,eps(ind));

end

knownTerms = [1 1];

[p1j3, c1j3] = findNextPower(eps, radEpsJ3, k, knownTerms);

% Returns p1 = 1.666

% c1 = 1

knownTerms = [1 1; 1 5/3];

[p2j3, c2j3] = findNextPower(eps, radEpsJ3, k, knownTerms);

% Returns p2 = 2.333

% c2 = 1.666

knownTerms = [1 1; 1 5/3; 5/3 7/3];

[p3j3, c3j3] = findNextPower(eps, radEpsJ3, k, knownTerms);

40

6 APPENDIX OF CODE

% Returns p3 = 2.96 ~ 3 (which would be the next one in the series)

% c3 = 0.178

%% Moving on... k=4

k = 4;

J4 = mp([0 1 0 0; 0 0 1 0; 0 0 0 1; 0 0 0 0]);

radEpsJ4 = mp(zeros(1, length(eps)));

for ind = 1:length(eps)

radEpsJ4(ind) = findradiusMP(J4,eps(ind));

end

knownTerms = [1 1];

[p1j4, c1j4] = findNextPower(eps, radEpsJ4, k, knownTerms);

% p1 --> 1.5

% c1 --> 1

knownTerms = [1 1; 1 1.5];

[p2j4, c2j4] = findNextPower(eps, radEpsJ4, k, knownTerms);

% p2 --> 2

% c2 --> 1.5

knownTerms = [1 1; 1 1.5; 1.5 2];

[p3j4, c3j4] = findNextPower(eps, radEpsJ4, k, knownTerms);

% p3 --> 2.5

% c3 --> 2.625

knownTerms = [1 1; 1 1.5; 1.5 2; 2.625 2.5];

[p4j4, c4j4] = findNextPower(eps, radEpsJ4, k, knownTerms);

%% Moving on... k=5

k = 5;

J5 = mp([0 1 0 0 0; 0 0 1 0 0; 0 0 0 1 0; 0 0 0 0 1; 0 0 0 0 0]);

41

6 APPENDIX OF CODE

radEpsJ5 = mp(zeros(1, length(eps)));

for ind = 1:length(eps)

radEpsJ5(ind) = findradiusMP(J5,eps(ind));

end

knownTerms = [1 1];

[p1j5, c1j5] = findNextPower(eps, radEpsJ5, k, knownTerms);

% p1 --> 1.4

% c1 --> 1

knownTerms = [1 1; 1 1.4];

[p2j5, c2j5] = findNextPower(eps, radEpsJ5, k, knownTerms);

% p2 --> 1.8

% c2 --> 1.4

knownTerms = [1 1; 1 1.4; 1.4 1.8];

[p3j5, c3j5] = findNextPower(eps, radEpsJ5, k, knownTerms);

% p3 --> 2.2

% c3 --> 2.24

k=5;

knownTerms = [1 1; 1 1.4; 1.4 1.8; 2.24 2.2];

[p4j5, c4j5] = findNextPower(eps, radEpsJ5, k, knownTerms);

%% Moving on... k=6

k = 6;

J6 = mp([0 1 0 0 0 0; 0 0 1 0 0 0; 0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1; 0 0 0 0 0 0]);

radEpsJ6 = mp(zeros(1, length(eps)));

for ind = 1:length(eps)

radEpsJ6(ind) = findradiusMP(J6,eps(ind));

end

knownTerms = [1 1];

42

6 APPENDIX OF CODE

[p1j6, c1j6] = findNextPower(eps, radEpsJ6, k, knownTerms);

% p1 --> 1.333

% c1 --> 1

knownTerms = [1 1; 1 8/6];

[p2j6, c2j6] = findNextPower(eps, radEpsJ6, k, knownTerms);

knownTerms = [1 1; 1 8/6; 8/6 10/6];

[p3j6, c3j6] = findNextPower(eps, radEpsJ6, k, knownTerms);

k=6;

knownTerms = [1 1; 1 8/6; 8/6 10/6; 2 2];

[p4j6, c4j6] = findNextPower(eps, radEpsJ6, k, knownTerms);

43

6 APPENDIX OF CODE

findRadiusMP.m

function [f, z] = findradiusMP(A, epsln)

% Alex Bank MP update (January 17 2020)

% Michael Overton and Emre Mengi (Last Update on Spetember 2 2014)

% call: function [f, z] = pspr_2way(A, epsln)

% Quadratically convergent two-way method to compute

% the eps-pseudospectral radius of A.

%

%

% The epsln-pseudospectral radius of A is the globally optimal value of:

% max |z|

% s.t. sigma_min(A - z I) = epsln (smallest singular value)

%

%

% input

% A square matrix

% epsln real >= 0 (0 implies f is spectral radius)

%

% output

% f the epsln-pseudospectral radius of A

% z one of the global maximizers except when

% the matrix is real. If the input matrix is real

% it contains either a global optimizer on the

% real axis or a complex conjugate pair.

% error checks

if isnaninf(A)|isnaninf(epsln)

error(’pspa_2way: nan or inf arguments not allowed’)

end

if epsln < 0 | imag(epsln) ~= 0

error(’pspr_2way: epsln must be nonnegative real’)

end

44

6 APPENDIX OF CODE

n = length(A);

if size(A) ~= [n n]

error(’A must be square’)

end

if (n >= 30)

h = waitbar(0,’Computing Pseudospectral Radius...(initializing)’);

else

h = 0;

end

% draw the eigenvalues of A

eA = eig(A);

smalltol = mp(’1e-18’)*max(norm(A),epsln);

purespr = max(abs(eA)); % pure spectral radius

if epsln == 0 % pseudospectrum is just the spectrum

[sortreal, indx] = sort(-abs(eA));

eA = eA(indx);

f = purespr;

% return all of the eigenvalues whose magnitudes are equal to spectral

% radius

ind = find(abs(eA) >= f - smalltol);

z = eA(ind);

if (n >= 30)

waitbar(1,h,’Computing Pseudospectral Radius...(completed)’)

end

if (n >= 30)

close(h)

end

else

45

6 APPENDIX OF CODE

rold = mp(’-0.00001’);

% initially r is spectral-radius

[r,ind] = max(abs(eA)); % initial iterate

% theta is the angles of the eigenvalues z, s.t |z| = r

% one such angle is sufficient, if just the pseudospectral radius

% is needed, but to return accurate global optimizers, all

% such angles should be computed.

theta = angle(eA(ind));

thetaold = theta;

thetabest = [];

iter = 0;

no_thetaeig = 0;

mE = -epsln*eye(mp(n));

% realtol is used to detect zero real parts up to some tolerance.

realtol = smalltol;

% radtol is the tolerance determining how far the eigenvalue magnitudes

% can be apart from unity (Used by the circular search).

radtol = smalltol;

while ~no_thetaeig & r > rold % r is increasing in exact arithmetic

iter = iter + 1;

if iter > 20

if (n >= 30)

close(h)

end

error(’pspr_2way: too many steps’)

end

46

6 APPENDIX OF CODE

thetabestt = thetabest;

rold = r;

% given the resulting directions in theta(computed in the

% previous iteration except when iter=1), look for the circle with

% the greatest radius intersecting pseudo-spectrum boundary.

% note: input theta is a vector, but output r is a scalar: the max

% of the max values. thetabest is the corresponding theta value and is

% a scalar, even if there was a tie e.g. from a complex conjugate pair.

[r, thetabest] = radiushelperMP(A, mE, theta, realtol, rold, iter,h);

ptout = sprintf(’Computing Pseudospectral Radius...(iteration %d)’,iter);

if (n >= 30)

waitbar((2*(iter-1)+1)/12,h,ptout)

end

if r > rold

% given current r, look for all relevant intersections of the circle

% with radius r with the pseudospectrum, process and return pair midpoints.

% note: input r is a scalar, but output theta is a vector.

% the input thetabest is a scalar.

% there is one difference compared to pseudo-absicca case

% let theta contains t1 <= t2 <= ... <= tn

% the intervals are circular that is we have to check the midpoints

% of [t1,t2], [t2,t3], ..., [tn-1,tn],[tn,t1].

% In one of these directions there should be a point on the

% boundary with a greater radius compared to current maximum radius

thetaold = theta;

theta = findthetaMP(A, mE, epsln, r, thetabest, iter, radtol, ...

smalltol, h);

if (n >= 30)

waitbar((2*(iter-1)+2)/12,h)

end

47

6 APPENDIX OF CODE

no_thetaeig = isempty(theta);

if (no_thetaeig)

rold = r;

end

else

thetabest = thetabestt;

r = rold;

end % end of else

end % end of while

if (n >= 30)

waitbar(1,h,’Computing Pseudospectral Radius...(completed)’)

end

if isempty(thetabest)

if (n >= 30)

close(h)

end

error(’Failed in the first iteration (please choose a bigger epsilon)’);

end

% set f to the eps-pseudospectral radius

f = r;

z = r*(cos(thetabest) + mp(’1i’)*sin(thetabest));

if isreal(A) & ~isreal(z)

z = [z; r*(cos(thetabest) - mp(’1i’)*sin(thetabest))];

end

if (n >= 30)

close(h)

48

6 APPENDIX OF CODE

end

end

49

6 APPENDIX OF CODE

radiusHelperMP.m

function [rbest, thetabest] = radiushelperMP(A, mE, theta, realtol, rold, iter,h)

% Alex Bank MP update (January 17 2020)

% Michael Overton and Emre Mengi (Last update on September 2 2014)

% called by pspr_2way.m

% Given a set of angles in theta, in each direction finds the point

% on the pseudospectrum boundary with the largest radius, i.e.

% rnew(j) = max |z|

% s.t. sigma_min(A - z I) = epsln and angle(z) = theta(j)

% rbest is the maximum of the largest radius in any direction

% rbest = max rnew(j)

% 1<=j<=length(theta)

% thetabest is the angle of a point on the boudary with radius rbest in one of

% the directions in theta, i.e. let rbest = rnew(k), for some k, 1<=k<=length(theta),

% then thetabest = theta(k).

n = length(A);

for j=1:length(theta)

K1 = [mp(’1i’)*exp(mp(’1i’)*theta(j))*transpose(A) mE];

K2 = [-mE mp(’1i’)*exp(mp(’-1i’)*theta(j))*A];

K = [K1;K2];

eK = eig(K);

if min(abs(real(eK))) <= realtol % check if the matrix K has an imaginary eigenvalue

indx = find(abs(real(eK)) <= realtol); % extract such eigenvalues

rnew(j) = real(max(imag(eK(indx))));

else

% there may be no point on the boundary of the pseudospectrum

% in the direction theta(j)

rnew(j) = mp(’-inf’);

end % end of else

50

6 APPENDIX OF CODE

end % end of for

if isempty(rnew)

if (n >= 30)

close(h)

end

error(’no intersection point is found by the radial search(please try smaller epsilon)’)

end

% choose the maximum of the largest radius in directions included in theta

[rbest,ind] = max(rnew);

thetabest = theta(ind);

51

6 APPENDIX OF CODE

findthetaMP.m

function thetanew = findthetaMP(A, mE, epsln, r, thetawant, iter, radtol, ...

smalltol, h)

% Alex Bank MP update (January 17 2020)

% Michael Overton and Emre Mengi (Last Update on September 2 2014)

% called by pspr_2way.m

% Given a radius r, it first computes the intersection points

% of eps-pseudospectrum boundary with the circle with radius r.

% This is achieved by finding the generalized eigenvalues of the

% matrix pencil F - lambda*G where

%

% F=[-eps*I A;r*I 0], G=[0 r*I; A’ -eps*I]

%

% and then performing a singular value test. The singular value test

% is neccessary to eliminate the points for which eps is a singular

% value but not the smallest one. Finally the midpoints of two

% succesive intersection points on the circle with radius r is

% calculated, i.e. let re^(i*theta_i) and re^(i*theta_(i+1)) be the

% ith and (i+1)th intersection points, then ith midpoint is

% re^(i*(theta_i+theta_(i+1))/2). Special attention is paid to

% keep the angles in the interval [-pi,pi). Furthermore, as it

% was the case for pseudo-absicca code, we specifically considered

% the case when the angle from the previous iteration is contained

% in one of the intervals. At the exit thetanew contains the

% angles of the midpoints.

n = length(A);

% compute the generalized eigenvalues of the matrix pencil F - lambda*G

R = r * eye(mp(n));

O = 0 * eye(mp(n));

F = [mE A; R O];

G = [O R; A’ mE];

eM = eig(F,G);

52

6 APPENDIX OF CODE

% extract the eigenvalues with magnitude 1

% a small tolerance is used

ind = find((abs(eM) < (mp(’1’) + radtol)) & (abs(eM) > (mp(’1’) - radtol)));

eM = eM(ind);

if (isempty(eM)) % check if M has an eigenvalue with magnitude 1

thetanew = [];

else

% sort eM wrt theta values

[theta, indx] = sort(angle(eM));

theta = angle(eM(indx));

% perform singular value test on the points probably on

% eps-pseudospectrum boundary.

% the ones actually on the eps-pseudospectrum are those with smallest

% singular value equal to eps

indx2 = [];

for j = 1: length(theta)

if (theta(j) < 0)

theta(j) = theta(j) + mp(’2*pi’);

end

Ashift = A - (r*(cos(theta(j)) + mp(’1i’)*sin(theta(j))))*eye(mp(n));

s = svd(Ashift);

[minval,minind] = min(abs(s-epsln));

if minind == n

indx2 = [indx2; j]; % accept this eigenvalue

end

end

53

6 APPENDIX OF CODE

removed = length(theta) - length(indx2);

if removed > 0

theta = theta(indx2);

end

if (isempty(theta))

if (n >= 30)

close(h)

end

error(’singular value test removed all of the intersection points(please try smaller epsilon)’)

end

theta = sort(theta);

% organize in pairs and take midpoints

thetanew = [];

ind = 0;

% shift thetawant, the angle from the previous iteration, into

% the interval [0,2pi]

if (thetawant < 0)

thetawant = thetawant + mp(’2*pi’);

end

for j=1:length(theta)

thetalow = theta(j);

if (j < length(theta))

thetahigh = theta(j+1);

else

% the last interval wraps around

thetahigh = theta(1) + mp(’2*pi’);

end

54

6 APPENDIX OF CODE

% before taking the midpoint, if this interval is not very short,

% check and see if thetawant is in this interval, well away from the

% end points. If so, break this pair into two pairs, one above

% and one below thetawant, and take midpoints of both.

inttol = mp(’.01’) * (thetahigh - thetalow);

% this is needed for the last interval

if (thetawant+mp(’2*pi’) > thetalow + inttol & ...

thetawant+mp(’2*pi’) < thetahigh - inttol)

thetawantt = thetawant + mp(’2*pi’);

else

thetawantt = thetawant;

end

if thetawantt > thetalow + inttol & ...

thetawantt < thetahigh - inttol

% lower midpoint

thetamid = (thetalow + thetawantt)/mp(’2’);

% shift thetamid into the interval [-pi,pi] again

if (thetamid >= mp(’2*pi’))

thetamid = thetamid - mp(’2*pi’);

end

if (thetamid >= pi)

thetamid = thetamid - mp(’2*pi’);

end

% remove the midpoint if the minimum singular value is greater than

% epsilon, since in this case the midpoint should lie outside the

% epsilon-pseudospectrum.

if (min(svd(A-r*exp(mp(’1i’)*thetamid)*eye(mp(n)))) <= epsln)

ind = ind + 1;

55

6 APPENDIX OF CODE

thetanew(ind,1) = thetamid;

end

% upper midpoint

thetamid = (thetawantt + thetahigh)/mp(’2’);

% shift thetanew(ind) into the interval [-pi,pi] again

if (thetamid >= mp(’2*pi’))

thetamid = thetamid - mp(’2*pi’);

end

if (thetamid >= mp(’pi’))

thetamid = thetamid - mp(’2*pi’);

end

% remove the midpoint if the minimum singular value is greater than

% epsilon, since in this case the midpoint should lie outside the

% epsilon-pseudospectrum.

if (min(svd(A-r*exp(mp(’1i’)*thetamid)*eye(mp(n)))) <= epsln)

ind = ind + 1;

thetanew(ind,1) = thetamid;

end

else

% otherwise, if thetawant is not in the interval

% take the midpoint of thetalow and thetahigh

thetamid = (thetalow + thetahigh)/mp(’2’);

% shift thetanew(ind) into the interval [-pi,pi] again

if (thetamid >= mp(’2*pi’))

thetamid = thetamid - mp(’2*pi’);

end

if (thetamid >= mp(’pi’))

thetamid = thetamid - mp(’2*pi’);

end

56

6 APPENDIX OF CODE

% remove the midpoint if the minimum singular value is greater than

% epsilon, since in this case the midpoint should lie outside the

% epsilon-pseudospectrum.

if (min(svd(A-r*exp(mp(’1i’)*thetamid)*eye(mp(n)))) <= epsln)

ind = ind + 1;

thetanew(ind,1) = thetamid;

end

end

end

% if A is real, discard the midpoints in the lower half plane

if isreal(A)

indx = find(thetanew >= 0 | thetanew == mp(’-pi’));

ynew = thetanew(indx);

end

end

57

6 APPENDIX OF CODE

isnaninf.m

function bval = isnaninf(A)

% call : bval = isnaninf(A)

% returns 1 if A contains an inifinite or a nan entry, otherwise

% returns 0

% input

% A input matrix, vector or scalar

% output

% bval 1 if A has a infinite or a nan entry, 0 otherwise.

if isnan(A) | isinf(A)

bval = 1;

else

bval = 0;

end

58

6 APPENDIX OF CODE

upperBound.R

upperBound.R

(c) Alex Bank 2020

Load library for drawing circles

library(plotrix)

Function to generate Jordan blocks

genJ <- function(N) {

J <- matrix(rep(0,N*N),nrow = N,ncol = N)

for (i in 1:(N-1)) J[i,i+1] <- 1

return(J)

}

Function for generating a complex number

rcomp <- function(x){

return(complex(

real = runif(1,-1,1),

imaginary = runif(1,-1,1)))

}

Function for generating an error matrix

with norm <= eps

genE <- function(eps,N){

errM <- matrix(

sapply(rep(0,N*N),rcomp),

nrow = N,ncol = N)

m <- norm(errM,type=’2’)

if (m>eps) {

x <- eps/norm(errM,type = "2")}

else {

x <- 1}

return(x*errM)

}

59

6 APPENDIX OF CODE

Function for returning eigenvalues

of A+E

genPseudo <- function(A,E){

return(eigen(A+E)[[1]])

}

Function for generating the plots

genPlot <- function(A,eps,ntimes,ax=TRUE,toplab=’’){

N <- dim(A)[1]

eigList <- lapply(rep(0,ntimes),

function(x)

{return(genPseudo(A,genE(eps,N)))})

origEigs <- eigen(A)[[1]]

lims <- 1+eps+0.1

if (ax) {

plot(1,type="n", xlab="", ylab="",

xlim=c(-lims, lims), ylim=c(-lims, lims),main = toplab)}

else {

plot(1,type="n", xlab="", ylab="",

xlim=c(-lims, lims), ylim=c(-lims, lims),

xaxt=’n’,yaxt=’n’,main=toplab)

}

for (e in eigList) {

points(Re(e),Im(e),pch=20,cex=.25)

}

points(Re(origEigs),Im(origEigs),col = ’gold’,pch=20)

draw.circle(0,0,1+eps,border=’red’,lty=2)

draw.circle(0,0,(eps+eps^((N+1)/N))^(1/N),

border=’blue’,lty=2)

if (ax) {

legend("topleft",legend = c("Old Upper Bound","New Upper Bound"),

col=c(’red’,’blue’),lty=2,cex=.7)}

else {

60

6 APPENDIX OF CODE

legend("topleft", legend = paste0("eps=",round(eps,3)),cex = .75,bty=’n’)

}

}

Figure 1

par(mai =rep(.5,4))

J3 <- genJ(3)

genPlot(J3,.1,2000)

Figure 2

par(mfrow = c(4,4), mai = rep(.1,4))

genPlot(J3,.1,500,FALSE)

for (i in 1:15) genPlot(J3,runif(1,0,.5),500,FALSE)

Figure 3

par(mfrow = c(2,2), mai = rep(.2,4))

J4 <- genJ(4); J5 <- genJ(5); J6 <- genJ(6); J7 <- genJ(7)

genPlot(J4,.1,1000,FALSE,"J4")

genPlot(J5,.1,1000,FALSE,"J5")

genPlot(J6,.1,1000,FALSE,"J6")

genPlot(J7,.1,1000,FALSE,"J7")

61

6 APPENDIX OF CODE

upperVlowerBound.R

upperVlowerBound.R

(c) Alex Bank 2020

genPlot2 <- function(A,eps,ntimes,ax=TRUE,toplab=’’){

N <- dim(A)[1]

eigList <- lapply(rep(0,ntimes),

function(x)

{return(genPseudo(A,genE(eps,N)))})

origEigs <- eigen(A)[[1]]

lims <- (eps+eps^((N+1)/N))^(1/N)+0.1

lowerB <- (eps+eps^((N+2)/N))^(1/N)

if (ax) {

plot(1,type="n", xlab="", ylab="",

xlim=c(-lims, lims), ylim=c(-lims, lims),main = toplab)}

else {

plot(1,type="n", xlab="", ylab="",

xlim=c(-lims, lims), ylim=c(-lims, lims),

xaxt=’n’,yaxt=’n’,main=toplab)

}

for (e in eigList) {

for(indEig in e) {

if (abs(indEig) > lowerB){

points(Re(indEig),Im(indEig),pch=20,cex=.4,col=’red’)

}

else {points(Re(indEig),Im(indEig),pch=20,cex=.25)}

}

}

points(Re(origEigs),Im(origEigs),col = ’gold’,pch=20)

draw.circle(0,0,(eps+eps^((N+2)/N))^(1/N),border=’forestgreen’,lty=2)

draw.circle(0,0,(eps+eps^((N+1)/N))^(1/N),

border=’blue’,lty=2)

if (ax) {

legend("topleft",legend = c("Leading two terms of Puiseux","Upper Bound"),

62

6 APPENDIX OF CODE

col=c(’forestgreen’,’blue’),lty=2,cex=.6)}

else {

legend("topleft", legend = paste0("eps=",round(eps,3)),cex = .75,bty=’n’)

}

}

genPlot2(J3,.2,20000)

63

	Introduction
	Introduction to Pseudospectra
	Spectra and Associated Definitions
	Pseudospectra
	Properties of Pseudospectra
	General Bounds for Diagonalizable Matrices

	Pseudospectra of Nonnormal Matrices
	Circulant Matrices
	Triangular Toeplitz Matrices
	The Jordan Block
	The 2 2 Jordan Block
	The 3 3 Jordan Block

	Computational Analysis of Pseudospectral Radius
	Radius of the Jordan Block
	Upper Bound on the Radius of the Jordan Block

	References
	Appendix of Code

