PCMI 2017 - Introduction to Random Matrix Theory Homework #9 – 07.10.2017

Exercise 1. Let $X_n = X_n(\omega)$ be an ensemble of $n \times n$ symmetric random matrices and let $\Lambda_n = \{\lambda_1(\omega), \lambda_2(\omega), \ldots, \lambda_n(\omega)\}$ be the eigenvalues of X_n . Assume that there exists a nonnegative function $\sigma : \mathbb{R} \to \mathbb{R}$, supported on a compact interval [a, b], continuous on [a, b] and analytic on (a, b) and there exists a constant c > 0 such that

$$\frac{1}{n}\sum_{k=1}^n \delta_{\frac{\lambda_k(\omega)}{n^c}} \ \xrightarrow{P} \ \sigma(x)\,dx$$

a) Let $x_0 \in (a, b)$ be such that $\sigma(x_0) > 0$. Find the correct scaling of the eigenvalues $b_n(\Lambda_n - a_n)$ near x_0 .

b) Suppose that $\sigma(b) = 0$ and there exists a constant d > 0 such that $\sigma(b - z) = \alpha z^d + o(z^d)$ as $z \downarrow 0$ and $\alpha \neq 0$. Find the correct scaling of the eigenvalues $b_n(\Lambda_n - a_n)$ near b.

c) Apply the previous two parts to the Gaussian Beta Ensemble.

Exercise 2. The Laplace transform of a random variable X is by definition the function $L_X : \mathbb{R} \to \mathbb{R}$ defined by $L_X(t) = \mathbb{E}(e^{tX})$. Prove that if X is a Poisson random variable with parameter $\lambda > 0$, then its Laplace transform is the function $L_X(t) = e^{-\lambda(1-e^{-t})}$.

Exercise 3. Suppose calls are coming into a telephone exchange at an average rate of 3 per minute, according to a Poisson arrival process. So, for instance, N(2, 4), the number of calls coming in between t = 2 and t = 4, has Poisson distribution with mean $3 \times (4 - 2) = 6$ and W_3 , the waiting time between the second and the third call has Exponential(3) distribution. Compute the following:

a) The probability that no calls arrive between t = 0 and t = 2.

b) The probability that the first call after t = 0 takes more than 2 minutes to arrive.

c) The probability that no calls arrive between t = 0 and t = 2 and at most four calls arrive between t = 2 and t = 3.

d) The probability that the fourth call arrives within 30 seconds of the third.

e) The probability that the fifth call takes more than 2 minutes to arrive.

Exercise 4. For any matrix $M \in Mat_{n \times n}(\mathbb{C})$ we define its operator norm by

$$||M||_{\rm op} = \sup_{x \in \mathbb{C}^n, ||x||_2 = 1} ||Mx||_2$$

a) Prove that $\|\cdot\|_{\text{op}}$: $\operatorname{Mat}_{n\times n}(\mathbb{C}) \to [0,\infty)$ is indeed a norm on the space of $n \times n$ matrices:

i) $||M||_{\text{op}} = 0$ if and only if M = 0,

ii) $\|\lambda M\|_{\text{op}} = |\lambda| \|M\|_{\text{op}}$ for any $\lambda \in \mathbb{C}$,

iii) $||M_1 + M_2||_{\text{op}} \le ||M_1||_{\text{op}} + ||M_2||_{\text{op}}$ for any $M_1, M_2 \in \text{Mat}_{n \times n}(\mathbb{C})$.

b) Prove that $||M_1M_2||_{op} \le ||M_1||_{op} ||M_2||_{op}$ for any $M_1, M_2 \in Mat_{n \times n}(\mathbb{C})$.

c) Prove that if X is an $n \times n$ symmetric matrix with eigenvalues $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$, then $\|X\|_{\text{op}} = \max\{|\lambda_1|, |\lambda_2|, \ldots, |\lambda_n|\}$.

d) Let $X_n = X_n(\omega)$ be the $n \times n$ GUE ensemble. Describe the distribution of $||X_n(\omega)||_{\text{op}}$ as n gets large.

Exercise 5. Let $X \in \operatorname{Mat}_{2n \times 2n}(\mathbb{C})$ be such that $X^T = -X$ (the matrix X is called antisymmetric). The Pfaffian of X is defined by the formula

$$\operatorname{Pf}(X) = \frac{1}{2^n n!} \sum_{\sigma \in S_{2n}} \operatorname{sgn}(\sigma) \prod_{i=1}^n X_{\sigma(2i-1),\sigma(2i)}$$

where $sgn(\sigma)$ denotes the sign of the permutation σ .

a) Let
$$J_n = \begin{pmatrix} 0 & 1 & & \\ -1 & 0 & & \\ & \ddots & & \\ & & 0 & 1 \\ & & & -1 & 0 \end{pmatrix} \in \operatorname{Mat}_{2n \times 2n}(\mathbb{C})$$
 (the matrix J_n consists of n

 2×2 blocks on the diagonal). Prove that $Pf(J_n) = 1$.

b) Prove that $Pf(Y^T X Y) = Pf(X)(\det Y)$ for every $Y \in Mat_{2n \times 2n}(\mathbb{C})$.

c) Prove that $(Pf(X))^2 = det(X)$.