PCMI 2017 - Introduction to Random Matrix Theory Homework #3-06.29.2017

- **Exercise 1.** Show that if U has uniform [0,1] distribution, then the random variable $Y = \tan(\pi U \frac{\pi}{2})$ has the Cauchy distribution.
- **Exercise 2.** Let X, Y, Z be independent identically distributed random variables with the uniform [0, 1] distribution. Compute the probability that the polynomial $P(t) = Xt^2 + Yt + Z$ has two distinct real roots.
- Exercise 3. Let $X = X(\omega)$ be a random 2×2 matrix with independent identically distributed coefficients X_{ij} , $1 \le i, j \le 2$ and such that each random variable X_{ij} is Bernoulli distributed with values in the set $\{-1,1\}$ and such that $\mathbb{P}(X_{ij}=-1)=\frac{1}{2}$ and $\mathbb{P}(X_{ij}=1)=\frac{1}{2}$. Find the distribution functions of $\operatorname{tr}(X)$, $\operatorname{det}(X)$ (the trace and the determinant of the random matrix X). Describe the distribution of the eigenvalues of the matrix X.
- **Exercise 4.** Let X and Y be two independent random variables. Prove that $\phi_{X+Y}(t) = \phi_X(t) \, \phi_Y(t)$.
- **Exercise 5.** Let X be a random variable, $a, b \in \mathbb{R}$ and Y = aX + b. Prove that $\phi_Y(t) = e^{itb}\phi_X(at)$.
- **Exercise 6.** If $Y = N(\mu, \sigma^2)$ (the random variable with mean μ and variance σ^2), then $\phi_Y(t) = \mathbb{E}(e^{itY}) = e^{it\mu \frac{1}{2}\sigma^2t^2}$. In particular, the characteristic function of the standard normal random variable N(0,1) is $e^{-\frac{t^2}{2}}$.