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Abstract

In this thesis, we first introduce the classical theory of orthogonal polynomials on

the unit circle and its corresponding matrix representations - the GGT representa-

tion and the CMV representation. We briefly discuss the Sturm oscillation theory

for the CMV representation. Motivated by Schulz-Baldes’ development of Sturm os-

cillation theory for matrix orthogonal polynomials on the real line, we study matrix

orthogonal polynomials on the unit circle. We prove a connection between spectral

properties of GGT representation with matrix entries, CMV representation with

matrix entries with intersection of Lagrangian planes. We use this connection and

Bott’s theory on intersection of Lagrangian planes to develop a Sturm oscillation

theory for GGT representation with matrix entries and CMV representation with

matrix entries.

Liyang Zhang

Williams College

Williamstown, Massachusetts 01267, USA
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1 INTRODUCTION

1 Introduction

Orthogonal polynomials on the unit circle (OPUC) were developed by Szegö around

1920. in the The theory of Matrix orthogonal polynomials on the unit circle was first

developed in the study of prediction theory [4] [5]. But the foundation paper about

the subject was written by Delsarte, Genin, Kamp in [2] and Youla, Kazanjian in

[3].

Given a nontrivial matrix-valued measure on the unit circle dµ, we can define

inner products:

⟨⟨f, g⟩⟩R =

∫
f(x)†dµg(x) (1.1)

⟨⟨f, g⟩⟩L =

∫
g(x)dµf(x)†. (1.2)

This gives us two sets of matrix orthogonal polynomials on the unit circle (MOPUC).

Similar to the theory of OPUC, we can define Verblunsky coefficients, GGT repre-

sentation and CMV representation from it. In the study of eigenvalues of the CMV

representation for OPUC, Stoiciu [6] described oscillation theory using the relation

that the zeros of the paraorthogonal polynomials are exactly the eigenvalues of the

corresponding CMV truncation. But the corresponding theory is not yet proven.

Hermann Schulz-Baldes developed a Sturm oscillation theory for matrix

orthogonal polynomials on the real line in [10]. He used the results of symplectic

geometry developed by Bott in [7], which connects the spectra of a matrix to the

intersection of Lagrangian planes. In this note, we use the same results of Bott to

develop a Sturm oscillation theory for GGT representation with matrix entries and

CMV representation with matrix entries.
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2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

2 Matrix Orthogonal Polynomial on the Unit Cir-

cle

2.1 Orthogonal Functions

We first establish the orthogonality of functions. Let µ be a measure.

Definition 2.1. An orthonormal set of functions {ϕi}i∈I ⊆ L2(S) where I is an

arbitrary counting set is defined by the relations

⟨ϕn, ϕm⟩ =
∫
S

ϕnϕmdµ = δnm, n,m ∈ I (2.1)

One quick observation is that functions in the orthonormal set are linearly

independent. Furthermore if the measure µ is supported only on a finite number

of points N then I is necessarily finite and |I| ≤ N . From this point we will call

measures supported on a set of finite number of points trivial measures.

Theorem 2.2. Let {fi}i∈I be a set of linearly independent functions in L2(S) for

some space S where I can be finite or infinite. Then an orthonormal set {ϕi}i∈I
exists.

Not only we can prove the theorem but we can explicitly construct the set

of orthonormal functions by the Gram-Schmidt process. We first construct a set of

orthogonal functions {Φi}i∈I as follows:

First we define a projection operator by

proju(v) =
⟨u,v⟩
⟨u,u⟩

u. (2.2)

Then let

Φ1 = f1, (2.3)

Φk = fk −
k−1∑
j=1

projΦj
(fk). (2.4)

Notice that this process will not stop because the set of functions are linearly
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2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

independent. Finally we can let

ϕi =
Φi

∥Φi∥
. (2.5)

Definition 2.3. Let {ϕi}i∈I be a given orthonormal set in L2(S, dµ). To an arbi-

trary function f ∈ L2(S, dµ), it corresponds the formal Fourier expansion

c1ϕ1 + c2ϕ2 + · · · (2.6)

where

ci = ⟨ϕi, f⟩ =
∫
S

ϕifdµ (2.7)

are the Fourier coefficients of f with respect to the orthonormal set {ϕi}.

Now we are ready to study orthogonal polynomials.

Definition 2.4. Let µ be a nontrivial measure on some space S so that for all n,

cn =

∫
S

|x|ndµ < ∞. (2.8)

If we orthogonalize the set of linearly independent functions {1, x, x2, . . .} by the

Gram-Schmidt process we obtain a set of monic orthogonal polynomials {Φi} and

a set of orthonormal polynomials {ϕi}. Both Φn and ϕn have degree precisely n.

6



2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

2.2 Orthogonal Polynomials on the Unit Circle

In this thesis, our main focus is the orthogonal polynomials with measure defined

on the unit circle. Let µ be an arbitrary nontrivial measure on ∂D. We usually

normalize the measure so that µ(∂D) = 1. We will assume this condition from here.

By the Gram-Schmidt process we have the monic orthogonal polynomials Φn(z) or

Φn(z; dµ) for the measure µ and the orthonormal polynomials φn given by

φn(z) = κnz
n + lower order terms (2.9)

where

κn = ∥Φn∥−1. (2.10)

One important feature of these polynomials is that they satisfy a recursion

relationship called Szegö recursion. To present the recursion, we begin with inves-

tigating some properties for orthogonal polynomials on the unit circle.

Let P be a monic polynomial of degree n, then Φn and Φn−P are orthogonal.

So we have

⟨Φn,Φn⟩ = ⟨Φn,Φn⟩+ ⟨Φn, P − Φn⟩ = ⟨Φn, P ⟩ (2.11)

and in particular

∥Φn∥2 = ⟨zn,Φn⟩ = ⟨zΦn−1,Φn⟩ = κ−2
n . (2.12)

Also notice that z ∈ ∂D implies

∥zΦn∥ = ∥Φn∥ and ⟨zf, g⟩ = ⟨f, z−1g⟩. (2.13)

On L2(∂D, dµ), we define the reverse polynomial f∗ for f to be

f∗(z) = (Rnf)(z) = znf(z). (2.14)
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2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

This map is anti-unitary so we have

⟨Rnf,Rng⟩ = ⟨g, f⟩. (2.15)

Now we are ready to prove an important lemma.

Lemma 2.5. Up to a constant, Φ∗
n(z) is the unique polynomial of degree (at most)

n which is orthogonal to z, z2, . . . , zn, that is, ⟨P, zj⟩ = 0, j = 1, 2, . . . , n, and

deg(P ) ≤ n ⇒ P = cΦ∗
n. Moreover, Φ∗

n(0) = 1 and

∥Φn∥2 = ∥Φ∗
n∥2 =

∫
Φ∗

n(e
iθ)dµ(eiθ). (2.16)

Proof. Since the operator Rn is anti-unitary and Φn is the unique polynomial

orthogonal to 1, . . . , zn−1, Φ∗
n = RnΦn is the unique polynomial orthogonal to

{Rnz
j}n−1

j=0 = {zn−j}n−1
j=0 = {zj}nj=1. For the second statement consider

Φ∗
n(0) = Rn(z

n + lower order terms)(0)

= (1 + (higher order terms))(0)

= 1. (2.17)

Finally,

∥Φn∥2 = ⟨Φn, z
n⟩ = ⟨Rnz

n, RnΦn⟩ = ⟨1,Φ∗
n⟩ =

∫
Φ∗

n(e
iθ)dµ(eiθ). (2.18)

Theorem 2.6. (Szegö Recursion). For any nontrivial probability measure µ on

∂D, we can define a sequence {αn}∞n=1 of numbers in D so that

Φn+1(z) = zΦn(z)− αnΦ
∗
n(z) (2.19)

Φ∗
n+1(z) = Φ∗

n(z)− αnzΦn(z). (2.20)

Moreover,

∥Φn+1∥2 = (1− |αn|2)∥Φn∥2 (2.21)

=
n∏

j=0

(1− |αj|2). (2.22)
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2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

Proof. Notice we have ⟨zΦn, z
k⟩ = ⟨Φn, z

k−1⟩ = 0 for k = 1, . . . , n. So zΦn is

orthogonal to z, z2, . . . , zn and Φn+1 is orthogonal to 1, z, z2, . . . , zn. Combining we

find Φn+1(z)−zΦn(z) is a polynomial of degree n which is orthogonal to z, z2, . . . , zn.

By the previous lemma, Φn+1(z)− zΦn(z) = −αnΦ
∗
n(z) for some complex number

−αn. Apply Rn to both sides of this equation we get Φ∗
n+1(z) = Φ∗

n(z)−αnzΦn(z).

Now consider the equality we obtained:

Φn+1(z) + αnΦ
∗
n(z) = zΦn(z). (2.23)

Taking the norm on both sides gives

∥Φn+1(z) + αnΦ
∗
n(z)∥2 = ∥zΦn(z)∥2. (2.24)

Notice that the cross term is 0 since terms on the left are orthogonal. So

∥Φn+1(z)∥2 + ∥αnΦ
∗
n(z)∥2 = ∥zΦn(z)∥2. (2.25)

This simplifies to

∥Φn+1∥2 = (1− |αn|2)∥Φn∥2 (2.26)

=
n∏

j=0

(1− |αj|2). (2.27)

Notice both ∥Φn+1∥2 and ∥Φn∥2 are positive. So 1− |αn|2 > 0 which completes the

proof.

Definition 2.7. From now on, we will call these αn’s the Verblunsky coefficients

associated to a measure.

Theorem 2.8. There is a bijection between nontrivial probability measures on the

unit circle and sequences of complex numbers {αn}n≥0 with |αn| < 1 for any n.

Example 2.9. One nontrivial example of orthogonal polynomials on the unit circle

is the degree one Bersterin-Szegö polynomials with parameter ζ = reiφ ∈ D. The

measure on the unit circle is given by ω(θ)dµ(eiθ) = 1−|ζ|2
|1−ζeiθ|2dµ(e

iθ). A simple
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2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

calculation gives

Φn(z) = zn − ζ̄zn−1.

φn(z) =
1√

1− |ζ|2
(zn − ζ̄n−1).

The Verblunsky coefficients are

α0 = ζ αj = 0(j ≥ 1).

10



2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

2.3 Matrix Representation

Orthogonal polynomials on the real line, similar to orthogonal polynomials on the

unit circle have a recursion relationship. But it is a much simpler three term

recursion:

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x). (2.28)

Here pn are the orthogonal polynomials on the real line. This relationship suggests

a clear matrix representation, the Jacobi matrix:

Jµ =


b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
· · · · · · · · · · · · · · ·

 (2.29)

The corresponding matrix representation for orthogonal polynomials on the

unit circle is less clear due to a more complicated recursion relationship. The first

representation is the GGT representation. It is named after Geronimus, Gragg,

and Yeplzaev. It is defined as follows:

Definition 2.10. Given a nontrivial probability measure µ on ∂D, we define the

GGT matrix {Gkℓ(dµ)}0≤k,ℓ<∞ by

Gkℓ = ⟨φk, zφℓ⟩ 0 ≤ k, ℓ < ∞. (2.30)

Definition 2.11. Given a sequence {αn}∞n=0 of numbers in D, we set α−1 = −1

and define the matrix {Gkℓ{αn}∞n=0}0≤k,ℓ<∞ by

G =


−ᾱℓαk−1

∏ℓ−1
j=k ρj 0 ≤ k ≤ ℓ

ρℓ k = ℓ+ 1

0 k ≥ ℓ+ 2

(2.31)

where ρℓ = (1− |αℓ|2)1/2.

We state without proof the fact that

Proposition 2.12. G(dµ) = G({αn(dµ)}∞n=0)
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2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

By calculation, we find the GGT representation has the form

G({αn}∞n=0) =


ᾱ0 ᾱ1ρ0 ᾱ2ρ0ρ1 ᾱ3ρ0ρ1ρ2 · · ·
ρ0 −ᾱ1α0 −ᾱ2α0ρ1 −ᾱ3α0ρ1ρ2 · · ·
0 ρ1 −ᾱ2α1 −ᾱ3α1ρ2 · · ·
0 0 ρ2 −ᾱ3α2 · · ·
· · · · · · · · · · · · · · ·

 . (2.32)

Notice that the GGT representation has a disadvantage of rows having

infinite non-zero entries. Here we introduce the CMV representation for orthogonal

polynomials on the unit circle. The name is given because of the work by Cantero,

Moral and Velázquez [1]. It has the attractive property that both columns and rows

have only finite non-zero entries. We first will define the CMV basis which is the

building block for the CMV representation of the orthogonal polynomials on the

unit circle. Let H(k,ℓ) be the space of Laurent polynomials spanned by {zj}ℓj=k and

P(k,ℓ) the orthogonal projection onto H(k,ℓ) in the Hilbert space L2(∂D, dµ). Define

H(n) =

{
H(−k,k) n = 2k

H(−k,k+1) n = 2k + 1
(2.33)

and P (n) = projection onto H(n).

Now we define χ
(0)
n by

χ(0)
n =

{
z−k n = 2k

zk+1 n = 2k + 1
. (2.34)

We obtain the CMV basis by executing Gram-Schmidt to the χ
(0)
n .

χn =
(1− P (n−1))χ

(0)
n

∥(1− P (n−1))χ
(0)
n ∥

. (2.35)

Note that this process will not stop since our assumption of nontriviality of dµ

ensures that χ
(0)
n are linearly independent. Thus ∥(1− P (n−1))χ

(0)
n ∥ ̸= 0.

We can also use the ordered set 1, z−1, z, z−2, z2, . . . to define an alternate
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2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

CMV basis using the same procedures. So we define

H̃(n) =

{
H(−k,k) n = 2k

H(−k−1,k) n = 2k + 1
(2.36)

and P̃ (n) = projection onto H̃(n).

x(0)
n =

{
zk n = 2k

z−k−1 n = 2k + 1
(2.37)

and the alternate CMV basis is obtained by Gram-Schmidt the x
(0)
n :

xn =
(1− P̃ (n−1))x

(0)
n

∥(1− P̃ (n−1))x
(0)
n ∥

. (2.38)

Lemma 2.13. Define σn = χ2n, τn = χ2n−1, sn = x2n, tn = x2n−1 with σn, sn labelled

by n = 0, 1, 2, . . . and τn, tn by n = 1, 2, . . .. Then we have

τn = z−n+1φ2n−1

σn = z−nφ∗
2n

tn = z−nφ∗
2n−1

sn = z−nφ2n

and

xn(z) = χn(1/z). (2.39)

Proof. Using our new notation, we notice

φ2n−1 =
(1− P(0,2n−2))z

2n−1

∥(1− P(0,2n−2))z2n−1∥
. (2.40)

Since

zℓP(k,m)z
−ℓ = P(k+ℓ,m+ℓ) (2.41)
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2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

we have

z−n+1φ2n−1 =
[z−n+1(1− P(0,2n−2))z

n−1]zn

∥[z−n+1(1− P(0,2n−2))zn−1]zn∥
(2.42)

=
(1− P(−n+1,n−1))z

n

∥(1− P(−n+1,n−1))zn∥
(2.43)

=
1− P (2n−2)χ

(0)
2n−1

∥1− P (2n−2)χ
(0)
2n−1∥

(2.44)

= χ2n−1 (2.45)

= τn. (2.46)

The proofs of the other are similar and hence omitted. The second statement is

immediate from the first statement.

The CMV representation, C(dµ) is

Cij(dµ) = ⟨χi, zχj⟩ (2.47)

where {χj}∞j=0 is the CMV basis. The alternate CMV representation C̃(dµ) is the
matrix

Cij(dµ) = ⟨xi, zxj⟩ (2.48)

where {xj}∞j=0 is the alternate CMV basis. The elements of the matrix C can be

determined by the following calculation:

⟨σj−1, zσj⟩ = ρ2j−1ρ2j−2 ⟨σj, zσj⟩ = −ᾱ2jα2j−1

⟨τj, zσj⟩ = −α2j−2ρ2j−1 ⟨τj+1, zσj⟩ = −α2j−1ρ2j

⟨σj−1, zτj⟩ = ᾱ2j−1ρ2j−2 ⟨σj, zτj⟩ = ᾱ2jρ2j−1

⟨τj, zτj⟩ = −ᾱ2j−1α2j−2 ⟨τj+1, zτj⟩ = ρ2jρ2j−1

14



2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

where ρℓ = (1− |αℓ|2)1/2. Thus

C =



ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 . . .

ρ0 −ᾱ1α0 −ρ1α0 0 0 . . .

0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .

0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .

0 0 0 ᾱ4ρ3 −ᾱ4α3 . . .

. . . . . . . . . . . . . . . . . .


. (2.49)

Similar calculations show that

C̃ =



ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 . . .

ρ0 −ᾱ1α0 −ρ1α0 0 0 . . .

0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .

0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .

0 0 0 ᾱ4ρ3 −ᾱ4α3 . . .

. . . . . . . . . . . . . . . . . .


. (2.50)

We can rewrite C as a product of matrices which is useful for computations.

Theorem 2.14. With the pairs of bases {χj}∞j=0 and {xj}∞j=0 define Mij(dµ) =

⟨xi, χj⟩ and Lij(dµ) = ⟨χi, zxj⟩. Then we have

C = LM; (2.51)

C̃ = ML. (2.52)
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2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

Proof.

Cij = ⟨χi, zχj⟩ (2.53)

= ⟨z−1χi, χj⟩ (2.54)

=
∞∑
ℓ=0

⟨z−1χi, xℓ⟩⟨xℓ, χj⟩ (2.55)

=
∞∑
ℓ=0

⟨χi, zxℓ⟩⟨xℓ, χj⟩ (2.56)

=
∞∑
ℓ=0

⟨LiℓMℓj (2.57)

= (LM)ij. (2.58)

The proof for C̃ is identical.
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2 MATRIX ORTHOGONAL POLYNOMIAL ON THE UNIT CIRCLE

2.4 Sturm Oscillation for CMV matrix

In this section, we focus on the CMV representation. We want to study the

eigenvalues of CMV matrix but since it is infinite we need to find a valid truncation.

Given a measure dµ on the unit circle with the corresponding Verblunsky coefficients

{αn}, orthogonal polynomials can be calculated using the Szegö recursion:

Φk+1 = zΦk(z)− ᾱkΦ
∗
k(z) k ≥ 0,Φ0 = 1. (2.59)

Notice that if we make |αN | = 1, then ρN = 0. So the CMV matrix decouples. We

write CN as the upper half of the decoupled CMV matrix. At the same time we

define the N -th paraorthogonal polynomial,

ΦN(z, dµ, β) = zΦN−1(z, dµ)− β̄Φ∗
N−1(z, dµ) (2.60)

We state the following important theorem

Theorem 2.15. The eigenvalues of the matrix CN are the zeros of the N-th paraorthog-

onal polynomial.

Therefore we can consider the complex function

BN(z) =
βzΦN−1(z)

Φ∗
N−1(z)

(2.61)

which has the property that ΦN(e
iθ) = 0 if and only if BN(e

iθ) = 1. Since the

truncated CMV matrix is a unitary matrix, all the eigenvalues are on the unit

circle. So we can only consider z of the form eiθ. At the same time |β| = 1 and

|Φn| = |Φ∗
n|, we have BN(z) lies on the unit circle. Thus we can rewrite the

expression as follows:

BN(e
iθ) = eiηN (θ). (2.62)

Here ηN(θ) is the Prüfer phase. The location of the eigenvalues of the truncated

CMV matrix is signaled by a 2π increase in the Prüfer phase. This is the Sturm Os-

ciallation theory for OPUC. We will develop a similar theory for Matrix Orthogonal

polynomials on the unit circle.
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3 MATRIX ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE

3 Matrix Orthogonal Polynomials on the Unit

Circle

3.1 Matrix Orthogonal Polynomials on the Unit Circle

In an effort to study higher dimensional systems, matrix valued orthogonal polyno-

mials were developed by Delsarte-Genin-Kamp [2] and Youla-Kazanjian [3]. Here

I will give a brief introduction. Let Ml be the ring of all ℓ × ℓ complex-valued

matrices. We will use P to donate the set of polynomials in z ∈ C with coefficients

inMl. A matrix-valued measure µ on C is the assignment of a positive semi-definite

ℓ × ℓ matrix µ(X) to every Borel set X which is countably additive. We usually

normalize it by requiring

µ(∂D) = 1. (3.1)

We can associate to any such measure a scalar measure

µtr(X) = Tr(µ(X)) (3.2)

(the trace normalized by Tr(1) = ℓ). At the same time µtr is normalized by

µtr(∂D) = ℓ.

Since the matrix value for the measure is positive semi-definite, we can apply

the Radon-Nikodym theorem to the matrix elements of µ. So there is a positive

semi-definite matrix function Mij(x) such that

dµij(x) = Mij(x)dµtr(x). (3.3)

Clearly we have

Tr(M(x)) = 1 (3.4)

for dµtr. Conversely, and scalar measure with µtr(∂D) = l and positive semi-

definite matrix valued function M obeying define a matrix-valued measure.

Here we will introduce an important notation. We will use A† to denote

the conjugate transpose of the matrix A. Given ℓ× ℓ matrix valued functions

18



3 MATRIX ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE

f, g, we define the ℓ× ℓ matrix ⟨⟨f, g⟩⟩R by

⟨⟨f, g⟩⟩R =

∫
f(z)†dµ(z)g(x)

=

∫
f(z)†M(z)g(z)dµtr(z); (3.5)

and ⟨⟨f, g⟩⟩L by

⟨⟨f, g⟩⟩L =

∫
g(z)dµ(z)f(z)†. (3.6)

We also define

∥f∥R = (Tr⟨⟨f, f⟩⟩R)1/2 , ∥f∥L = (Tr⟨⟨f, f⟩⟩L)1/2 . (3.7)

It satisfies these properties:

⟨⟨f, gα⟩⟩R = ⟨⟨f, g⟩⟩Rα,

⟨⟨fα, g⟩⟩R = α†⟨⟨f, g⟩⟩R,

⟨⟨f, g⟩⟩†R = ⟨⟨g, f⟩⟩R,

⟨⟨f, g⟩⟩L = ⟨⟨g†, f †⟩⟩R,

⟨⟨f, g⟩⟩†L = ⟨⟨g, f⟩⟩L,

∥f∥L = ∥f †∥R.

Now we define monic matrix polynomials ΦR
n ,Φ

L
n by applying Gram-Schmidt

orthogonalization to the set {1, z1, z21, . . .} using the inner product ⟨⟨·, ·⟩⟩R, ⟨⟨·, ·⟩⟩L
respectively. For example, ΦR

n is the unique matrix polynomial of order n with

⟨⟨zk1,ΦR
n ⟩⟩R = 0 k = 0, 1, . . . , n− 1. (3.8)

For a matrix polynomial Pn of degree n, we define the reverse polynomial

P ∗
n(z):

P ∗
n(z) = znPn(1/z)

†. (3.9)
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3 MATRIX ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE

It’s easy to show that

(P ∗
n)

∗ = Pn (3.10)

Now we define the normalized orthogonal matrix polynomial by

φL
0 = φR

0 = 1, φL
n = κL

nΦ
L
n and φR

n = ΦR
nκ

R
n (3.11)

where the κ’s are defined according to the normalization condition

⟨⟨φR
n , φ

R
m⟩⟩R = δnm1 ⟨⟨φL

n , φ
L
m⟩⟩L = δnm1 (3.12)

along with

κL
n+1(κ

L
n)

−1 > 0 and (κR
n )

−1κR
n+1 > 0. (3.13)

We now define

ρLn = κL
n(κ

L
n+1)

−1 and ρRn = (κR
n+1)

−1κR
n . (3.14)

Similar to the scalar orthogonal polynomials we have the Szegö recursion:

Theorem 3.1. (a) For suitable matrices αL,R
n , the following is true:

zφL
n − ρLnφ

L
n+1 = (αL

n)
†φR,∗

n , (3.15)

zφR
n − φR

n+1ρ
R
n = φL,∗

n (αR
n )

†. (3.16)

(b) The matrices αL
n and αR

n are equal and will be denoted by αn. We now call

these αn’s Verblunsky coefficients.

(c) ρLn = (1− α†
nαn)

1/2 and ρRn = (1− αnα
†
n)

1/2.

The proof for (a) is very similar to the proof in the scalar case so it will be

omitted. We will give a proof for part (b) and (c):
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Proof. (b)

(αL
n)

† = 0+ (αL
n)

†1

= ⟨⟨φR,∗
n , ρLnφ

L
n+1⟩⟩L + (αL

n)
†⟨⟨φR

n , φ
R
n ⟩⟩R

= ⟨⟨φR,∗
n , ρLnφ

L
n+1⟩⟩L + (αL

n)
†⟨⟨φR,∗

n , φR,∗
n ⟩⟩L

= ⟨⟨φR,∗
n , ρLnφ

L
n+1 + (αL

n)
†φR,∗

n ⟩⟩L
= ⟨⟨φR,∗

n , zφL
n⟩⟩L

= ⟨⟨zφR
n , φ

L,∗
n ⟩⟩†R

= ⟨⟨φR
n+1ρ

R
n + φL,∗

n (αR
n )

†, φL,∗
n ⟩⟩†R

= ⟨⟨φR
n+1ρ

R
n , φ

L,∗
n ⟩⟩†R + ⟨⟨φL,∗

n (αR
n )

†, φL,∗
n ⟩⟩†R

= 0+ ⟨⟨φL,∗
n , φL,∗

n (αR
n )

†⟩⟩R
= ⟨⟨φL,∗

n , φL,∗
n ⟩⟩R(αR

n )
†

= ⟨⟨φL
n , φ

L
n⟩⟩L(αR

n )
†

= (αR
n )

†.

(c)

1 = ⟨⟨zφL
n , zφ

L
n⟩⟩L

= ⟨⟨ρLnφL
n+1 + α†

nφ
R,∗
n , ρLnφ

L
n+1 + α†

nφ
R,∗
n ⟩⟩L

= ρLn⟨⟨φL
n+1, φ

L
n+1⟩⟩L(ρLn)† + α†

n⟨⟨φR,∗
n , φR,∗

n ⟩⟩Lαn

= (ρLn)
2 + α†

n⟨⟨φR
n , φ

R
n ⟩⟩Rαn

= (ρLn)
2 + α†

nαn.

Note here that 1 − α†
nαn is a positive semi-definite matrix. So it has a unique

positive semi-definite square root and this is how the square root is defined here.

The proof for the second equality is similar.

Similar to the scalar orthogonal polynomials on the unit circle, there is a

one-to-one correspondence between matrix-measures and matrix Verblunsky coef-

ficients.

Theorem 3.2. Any sequence {αj}∞j=0 ∈ D∞ is the sequence of Verblunsky coeffi-

cients of a unique measure.
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3.2 Matrix Representation

In this section, we will develop the GGT and CMV representations for matrix

orthogonal polynomial on the unit circle. The GGT representation is defined by

Gkℓ = ⟨⟨φR
k , zφ

R
ℓ ⟩⟩R. (3.17)

Of course we can define the matrix G by using ⟨⟨·, ·⟩⟩L. But the theory is identical

and hence it will be omitted here. A straight forward computation shows that

Gkℓ =


−αk−1ρ

L
k ρ

L
k+1 · · · ρℓ−1α

†
ℓ 0 ≤ k ≤ ℓ

ρRℓ k = ℓ+ 2

0 k ≥ ℓ+ 2

. (3.18)

In matrix form, we have

G =



α†
0 ρL0α

†
1 ρL0 ρ

L
1α

†
2 ρL0 ρ

L
1 ρ

L
2α

†
3 · · ·

ρR0 −α0α
†
1 −α0ρ

L
1α

†
2 −α0ρ

L
1 ρ

L
2α

†
3 · · ·

0 ρR1 −α1α
†
2 −α1ρ

L
2α

†
3 · · ·

0 0 ρR2 −α2α
†
3 · · ·

...
...

...
...

. . .


. (3.19)

Similar to OPUC, this does not have finite non-zero row entries. From the definition

of G, we observe the following facts:

Proposition 3.3. The matrix G is unitary in the following sense:

∞∑
k=0

G†
knGkm =

∞∑
k=0

GnkG†
mk = δnm1. (3.20)

Proposition 3.4. Let |z| ≤ 1. Then, for every m > 0,

∞∑
n=0

φn(z)Gnm = zφm(z),
∞∑
n=0

Gmnφn(1/z)
† = zφm(1/z)

†. (3.21)

In order to have the feature of finite non-zero entries in both columns and
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rows, we define the following CMV basis:

χ2k(z) = z−kφL,∗
2k (z), χ2k−1(z) = z−k+1φR

2k−1(z), (3.22)

x2k(z) = z−kφR
2k(z), x2k−1(z) = z−kφL,∗

2k−1(z). (3.23)

Proposition 3.5. (i) {χℓ(z)}∞ℓ=0 and {xℓ(z)}∞ℓ=0 are ⟨⟨·, ·⟩⟩R orthonormal, that is

⟨⟨χk, χm⟩⟩R = ⟨⟨xk, xm⟩⟩R = δkm. (3.24)

(ii) χℓ is in the module space of the first ℓ of 1, z−1, z, . . . and xℓ of 1, z, z
−1, . . ..

We definte the CMV matrix Cnm = ⟨⟨χn, zχm⟩⟩R.

Proposition 3.6. The matrix C is unitary in the following sense:

∞∑
k=0

C†
knCkm =

∞∑
k=0

CnkC†
mk = δnm1. (3.25)

Proposition 3.7. Let |z| ≤ 1. Then, for every m > 0,

∞∑
n=0

χn(z)Cnm = zχm(z),
∞∑
n=0

Cmnχn(1/z)
† = zχm(1/z)

†. (3.26)

An important feature of the matrix C is that it can represented as the

product of two matrices:

Cnm = ⟨⟨χn, zχm⟩⟩R =
∞∑
k=0

⟨⟨χn, zxk⟩⟩R⟨⟨xk, χm⟩⟩R =
∞∑
k=0

LnkMkm. (3.27)

Now we define the 2ℓ× 2ℓ unitary matrix

Θn = Θ(αn) =

(
α†
n ρLn

ρRn −αn

)
. (3.28)

Proposition 3.8. We have the following relationships:

L = Θ(α0)⊕Θ(α2)⊕Θ(α4)⊕ · · · ; (3.29)

M = 1ℓ×ℓ ⊕Θ(α1)⊕Θ(α3)⊕ · · · . (3.30)

(3.31)
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And C can be written in matrix form:

C =



α†
0 ρL0α

†
1 ρL0 ρ

L
1 0 0 · · ·

ρR0 −α0α
†
1 −α0ρ

L
1 0 0 · · ·

0 α†
2ρ

R
1 −α†

2α1 ρL2α
†
3 ρL2 ρ

L
3 · · ·

0 ρR2 ρ
R
1 −ρR2 α1 −α2α

†
3 −α2ρ

L
3 · · ·

0 0 0 α†
4ρ

R
3 −α†

4α3 · · ·
...

...
...

...
...

. . .


. (3.32)

The proof is a straight forward computation and will be omitted here.
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4 Sturm Oscillation Theory for Matrix Orthogo-

nal Polynomial on the Unit Circle

4.1 Matrix Paraorthogonal Polynomial on the Unit Circle

and Its Matrix Representation

Both GGT and CMV representation are infinite dimensional matrices. We want to

study its eigenvalues so we need to find a valid truncation.

Definition 4.1. Given any unitary β ∈ Mℓ, we define the N-th paraorhogonal

polynomial to be:

φR
N(z; β) = zφR

N−1(z)− φL,∗
N−1(z)β

†. (4.1)

With β ∈ Mℓ as the N -th Verblunsky coefficients both GGT and CMV

matrices decouple. This is because for αN = β, ρLN = ρRN = 0. We will use GN(β)

to denote the truncated GGT matrix.

GN(β) =



α†
0 ρL0α

†
1 ρL0 ρ

L
1α

†
2 ρL0 ρ

L
1 ρ

L
2α

†
3 · · · ρL0 ρ

L
1 · · · ρLN−1β

†

ρR0 −α0α
†
1 −α0ρ

L
1α

†
2 −α0ρ

L
1 ρ

L
2α

†
3 · · · −α0ρ

L
1 · · · ρLN−1β

†

0 ρR1 −α1α
†
2 −α1ρ

L
2α

†
3 · · · −α1ρ

L
2 · · · ρLN−1β

†

0 0 ρR2 −α2α
†
3 · · · −α2ρ

L
3 · · · ρLN−1β

†

...
...

...
...

. . .
...

0 0 0 0 · · · −αN−1β
†


(4.2)

Note that the matrix GN(β) has dimension N + 1.

Proposition 4.2. GN(β) is unitary.

For the CMV representation, we want to first study the LM-decomposition,

it is known that if we define

Θn = Θ(αn) =

(
α†
n ρLn

ρRn −αn

)
(4.3)
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where αn are the Verblunsky coefficients then we have

L =


Θ0

Θ2

Θ4

. . .



M =


1

Θ1

Θ3

. . .


and

C = LM. (4.4)

Note ∥αn∥ < 1 for all n. If we replace αN with a unitary matrix β then ρLN = ρRN = 0.

As a result the CMV matrix C decouples into CN(β) with dimension n + 1 and a

lower half matrix. Let us define the following:

L2m = Θ(α0)⊕Θ(α2)⊕ · · · ⊕Θ(α2m)

M2n+1 = 1⊕Θ(α1)⊕ · · · ⊕Θ(α2n+1). (4.5)

Then we have

CN(β) =

{
LN−1(MN−2 ⊕ β†), for N odd

(LN−2 ⊕ β†)(MN−1), for N even.
(4.6)

In matrix form we have

CN(β) =



α†
0 ρL0α

†
1 ρL0 ρ

L
1 0 0 · · · 0

ρR0 −α0α
†
1 −α0ρ

L
1 0 0 · · · 0

0 α†
2ρ

R
1 −α†

2α1 ρL2α
†
3 ρL2 ρ

L
3 · · · 0

0 ρR2 ρ
R
1 −ρR2 α1 −α2α

†
3 −α2ρ

L
3 · · · 0

0 0 0 α†
4ρ

R
3 −α†

4α3 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · −αN−1β
†


, N odd
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CN(β) =



α†
0 ρL0α

†
1 ρL0 ρ

L
1 0 0 · · · 0

ρR0 −α0α
†
1 −α0ρ

L
1 0 0 · · · 0

0 α†
2ρ

R
1 −α†

2α1 ρL2α
†
3 ρL2 ρ

L
3 · · · 0

0 ρR2 ρ
R
1 −ρR2 α1 −α2α

†
3 −α2ρ

L
3 · · · 0

0 0 0 α†
4ρ

R
3 −α†

4α3 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · −β†αN−1


, N even

Similar to GN(β), CN(β) has dimension N + 1.

Proposition 4.3. CN(β) is unitary.
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4.2 Transition Matrices

One important feature of matrix orthogonal polynomials on the unit circle is the

existence of transition matrices. They are essential in analyzing the eigenvalues for

GGT and CMV matrices with matrix entries. Recall the Szegö recursion:

zφL
n − ρLnφ

L
n+1 = (αL

n)
†φR,∗

n , (4.7)

zφR
n − φR

n+1ρ
R
n = φL,∗

n (αR
n )

†. (4.8)

These imply a transition matrix for orthogonal polynomials:(
φL
n+1

φR,∗
n+1

)
= AL(an, z)

(
φL
n

φR,∗
n

)
(4.9)

where

AL(α, z)

(
z(ρL)−1 −(ρL)−1α†

−z(ρR)−1α (ρR)−1

)
. (4.10)

At the same time, the Szegö recursion implies another set of relations:

φR
n+1 = zφR

n (ρ
R
n )

−1 − φL,∗
n α†

n(ρ
R
n )

−1, (4.11)

φL,∗
n+1 = φL,∗

n (ρLn)
−1 − zφR

nαn(ρ
L
n)

−1. (4.12)

In other words, (
φR
n+1 φL,∗

n+1

)
=
(

φR
n φL,∗

n

)
AR(αn, z) (4.13)

where

AR(α, z) =

(
z(ρR)−1 −zα(ρL)−1

−α†(ρR)−1 (ρL)−1

)
. (4.14)

For our convenience, we can reorganize the above to the following:

Proposition 4.4. For z ∈ ∂D(
φR
n+1

φL,∗
n+1

)
= T G

n (αn, z)

(
φR
n+1

φL,∗
n

)
(4.15)
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where

T G
n (αn, z) = zAR,†

n . (4.16)

Proof. First we take the conjugate transpose of equation (4.13) and we get(
z−(n+1)φR

n+1

φL,†
n+1

)
= AR,†

n (αn, z)

(
z−nφR

n+1

φL,†
n

)
. (4.17)

Now multiply both sides by zn+1

(
φR
n+1

φL,∗
n+1

)
= zAR,†

n (αn, z)

(
φR
n+1

φL,∗
n

)
. (4.18)

For the CMV representation, it is more convenient to study the transition

properties of the CMV basis. We have that

χ2k(z) = z−kφL,∗
2k (z), χ2k−1(z) = z−k+1φR

2k−1(z)

x2k(z) = z−kφR
2k(z), x2k−1(z) = z−kφL,∗

2k−1(z).

By plugging these into Szegö recursion we find

zx2k = χ2kα
†
2k + χ2k+1ρ

R
2k

zx2k+1 = χ2kρ
L
2k − χ2k+1α2k

χ2k−1 = x2k−1α
†
2k−1 + x2kρ

R
2k−1

χ2k = x2k−1ρ
L
2k−1 − x2kα2k−1.

Reorganizing these equations will give us two sets of transition functions:(
χ†
2k+1

x†
2k+1

)
= T C

2k(α2k, z)

(
χ†
2k

x†
2k

)
(4.19)(

χ†
2k

x†
2k

)
= T C

2k−1(α2k−1, z)

(
χ†
2k−1

x†
2k−1

)
. (4.20)

Proposition 4.5. For z ∈ ∂D
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T C
2k(α2k, z) = z

(
0 1

z 0

)
AL(α2k, z) (4.21)

T C
2k−1(α2k−1, z) = AL(α2k−1, z)

(
0 z−1

1 0

)
(4.22)

Proof. If z ∈ ∂D, from the definitions of χ’s and x’s we have that

χ†
2k(z) = z−kφL

2k(z) χ†
2k−1(z) = z−kφR,∗

2k−1(z) (4.23)

x†
2k(z) = z−kφR,∗

2k (z) x†
2k−1(z) = z−k+1φL

2k−1(z). (4.24)

This gives (
χ†
2k

x†
2k

)
= z−k

(
φL
2k

φR,∗
2k

)
; (4.25)(

χ†
2k−1

x†
2k−1

)
= z−k

(
0 1

z 0

)(
φL
2k−1

φR,∗
2k−1

)
. (4.26)

Using the transition function for φ’s we get(
χ†
2k

x†
2k

)
= AL(α2k−1, z)

(
0 1

z 0

)−1(
χ†
2k−1

x†
2k−1

)
(4.27)

and (
χ†
2k+1

x†
2k+1

)
= z

(
0 1

z 0

)
AL(α2k, z)

(
χ†
2k

x†
2k

)
. (4.28)

This completes the proof.
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4.3 Intersection of Lagrangian Planes and Sturm Oscilla-

tion

We first consider the matrix

J =

(
1 0

0 −1

)
(4.29)

where 1 is the ℓ× ℓ identity matrix. The J -Lagrangian planes in C2L is defined to

be ℓ-dimensional planes on which the form J vanishes.

Definition 4.6. Let Φ = (ϕ(1), . . . , ϕ(L)) with the vectors ϕ(1), . . . , ϕ(L) ∈ C2ℓ.

Then we call Φ a J -Lagrangian frame if

Φ†JΦ = 0. (4.30)

Definition 4.7. A J -Lagrangian plane is the equivalence class [Φ]∼ with the rela-

tion ∼: Φ ∼ Φ† if Φ = Φ†c for some c ∈ Gl(ℓ,C). The J -Lagrangian Grassmannian

Lℓ is the set of all equivalence classes of J -Lagrangian planes.

Proposition 4.8. The set L∗
ℓ = {Φ = (a, b)T |a, b are invertible} ⊂ LL is bijective

to U(L) via the map

Π([Φ]∼) = ab−1. (4.31)

Proof. Let Φ =

(
a

b

)
be J -Lagrangian. We have that a†a = b†b.Therefore

Π([Φ]∼)
†Π([Φ]∼) = (b†)−1a†ab−1 = 1. So Π([Φ]∼) is unitary. Let U = ab−1 we

have Φ

(
U

1

)
b. This establishes the bijection.

Proposition 4.9. Let Φ and Ψ be J -Lagrangian planes, and Let U = Π([Φ]∼) and

V = Π([Ψ]∼). Then

dim(ΦCℓ ∩ΨCℓ) = dim(ker(Φ†JΨ)) = dim(ker(V †U − 1ℓ)). (4.32)

Proof. Let us begin with the inequality ≤ of the first equality. Suppose there are

two ℓ× p matrices v, w of rank p such that Φv = Ψw. Then Φ†JΨw = Φ†J v = 0
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so that the kernel of Φ†JΨ is at least of dimension p. Inversely, given a ℓ×p matrix

w of rank p such that Φ†JΨw = 0, we deduce that (JΦ)†Ψw = 0. As the column

vectors of Φ and JΨ are orthogonal and span C2ℓ, it follows that the column vectors

of Ψw lie in the span of Φ, that is, there exists an ℓ × p matrix v of rank p such

that Ψw = Φv. This shows that the other inequality and hence proves the first

equality of the proposition. For the second, we first note that the dimension of the

kernel of Φ†JΨ does not depend on the choice of the representative. We use the

representative of Φ =

(
π([Φ]∼)

1

)
and Ψ =

(
π([Ψ]∼)

1

)
. A short calculation

shows that Φ†JΨ = 2iU †(U − V ) which implies the second equality.

Notice that dim(ker(V †U − 1ℓ)) also can be rephrased as the multiplicity of

1 as eigenvalue of V †U .

Proposition 4.10. J -Lagrangian planes are mapped to the J -Lagrangian planes

by matrices in the J -invariance group defined by

I(2ℓ,C) = {T ∈ Mat(2ℓ× 2ℓ,C)|T †J T = ±J}. (4.33)

Proof. This can be seen as:

(T Φ)†J (T Φ)

= Φ†T †J T Φ

= Φ†(±J )Φ

= 0

Theorem 4.11. If z ∈ ∂D we have that both T G are T C are J -invariant meaning:

T †J T = ±J (4.34)

Proof. First, let’s prove that if A,B ∈ I(2ℓ,C) then AB ∈ I(2ℓ,C). This can be
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seen as

(AB)†J (AB)

= B†(A†JA)B

= B†(±J )B

= ±J

A simple calculation shows that(
0 1

z 0

)†

J

(
0 1

z 0

)
= −J (4.35)

(
0 z−1

1 0

)†

J

(
0 z−1

1 0

)
= −J (4.36)

At the same time

AL(α, z)†JAL(α, z)

=

(
z̄(ρL)−1 −z̄(ρR)−1

−α(ρL)−1 (ρR)−1

)(
z(ρL)−1 −(ρL)−1α†

z(ρR)−1α −(ρR)−1

)

=

(
z̄z(ρL)−2 − z̄z(ρR)−2α −z̄(ρL)−2α† + z̄α†(ρR)−2

−zα(ρL)−2 + z(ρR)−2α α(ρL)−2α† − (ρR)−2

)

=

(
z̄z1 0

0 −1

)
= J

Similarly,

AR(α, z)†JAR(α, z) = J .

This completes the proof.

Proposition 4.12. Let z ∈ ∂D. With

(
φR
0

φL,∗
0

)
=

(
1

1

)
and

(
χ†
0

x†
0

)
=

(
1

1

)
,
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we have that

(
φR
n

φL,∗
n

)
and

(
χ†
n

x†
n

)
are J -Lagrangian.

Proof. Clearly

(
φR
0

φL,∗
0

)
and

(
χ†
0

x†
0

)
are J -Lagrangian. At the same time the

transition matrices are J -invriant. So Lagrangian planes will be mapped to La-

grangian planes by these transition matrices. Thus

(
φR
n

φL,∗
n

)
and

(
χ†
n

x†
n

)
are

J -Lagrangian.

We are interested in study the truncated versions of both matrix represen-

tations. For the GGT representation, let’s consider the N -th vector

(
φR
N

φL,∗
N

)
. It

can calculated from applying the first N−1 transition matrix to

(
φR
0

φL,∗
0

)
. But we

are imposing an extra condition at the end, which is αN = β. From the recursion

formula, this requires the vector

(
φR
N

φL,∗
N

)
satisfy

zφR
N = φL,∗

N β†. (4.37)

It is important to note that this is not necessarily satisfied by the N -th vector. We

will show that the degree which the N -th vector satisfies this condition corresponds

to the multiplicity of z as an eigenvalue of GN . We introduce the vector

BG =

(
β†

z

)
, (4.38)

as the boundary condition.

Similar to the GGT representation, the recursion formula for CMV basis

gives the following boundary conditions based on the parity of N :

zx†
N = −β†χ†

N for N even (4.39)

χ†
N = −β†x†

N for N odd. (4.40)

These are extra constraints on the final vector

(
χ†
N

x†
N

)
. We introduce the following
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vectors:

BC =

(
z1

−β†

)
when N is even (4.41)

BC =

(
1

−β†

)
when N is odd. (4.42)

Again, these vectors are another way to describe the boundary conditions to suit

our purpose.

Theorem 4.13.

The geometric multiplicity of z as an eigenvalue of GN

= dim

((
φR
N

φL,∗
N

)
Cℓ ∩ BGCℓ

)
. (4.43)

The geometric multiplicity of z as an eigenvalue of CN

= dim

((
χ†
N

x†
N

)
Cℓ ∩ BCCℓ

)
. (4.44)

Remark 4.14. Given the complexity of the CMV and GGT representation with

matrix entries, the eigenvalues are often hard to find. The above theorem relates

information about eigenvalues to the intersection of two Lagrangian planes. Thus

we can use the tools in symplectic geometry to find an algorithm to determine

eigenvalues.

Proof. The proofs for GGT and CMV are identical, we will present the detail for

the more difficult CMV case. Recall that we have

∞∑
n=0

Cmnχn(1/z)† = zχm(1/z)
†. (4.45)

Notice that since CN is unitary, all the eigenvalues are on the unit circle. So we have

z = 1/z. For CN , let’s introduce the vector ΦN(z) = (χ†
0(z), χ

†
1(z), . . . , χ

†
N(z))

T .
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Notice if we can find a vector v⃗ ∈ Cℓ such that

CNΦN(z)v⃗ = zΦN(z)v⃗ (4.46)

then ΦN(z)v⃗ is an eigenvector for CN with eigenvalue z. So if we choose v⃗ ∈(
χ†
N

x†
N

)
Cℓ ∩ BCCℓ then v⃗ satisfy

zx†
N v⃗ = −β†χ†

N v⃗ for N even

χ†
N v⃗ = −β†x†

N v⃗ for N odd.

It satisfies the final boundary condition and thus we have CNΦN(z)v⃗ =

zΦN(z)v⃗. This shows that ΦN(z)v⃗ is an eigenvector.

Conversely, if t⃗ = (t1, t2, . . . , tℓN+ℓ)
T ∈ CℓN+ℓ is an eigenvector with eigen-

value z. We rewrite t⃗ as

T⃗ = (T0, T1 . . . , TN), where Tn = (tnL1 , . . . , t(n+1)ℓ). (4.47)

I claim that we have

CNΦN(z)T0 = zΦN(z)T0 (4.48)

with ΦN(z)T0 = T⃗ . This shows T0 must be in the intersection of

(
χ†
N

x†
N

)
Cℓ

and BCℓ. To prove the claim ΦN(z)T0 = T⃗ we show the equality component-wise

by inducting on Tn. The base case T0 is trivial. Then we consider the equation

CNΦN(z)T0 = zΦN(z)T0. The first two lines give

α†
0χ

†
0(z)T0 + ρL0α

†
1χ

†
1(z)T0 + ρL0 ρ

L
1χ

†
2(z)T0 = zχ†

0(z)T0 (4.49)

ρR0 χ
†
0(z)T0 − α0α

†
1χ

†
1(z)T0 − α0ρ

L
1χ

†
2(z)T0 = zχ†

1(z)T0 (4.50)

Let’s compare these with the first two lines of the eigenvalue equation CN T⃗ = zT⃗ :

α†
0T0 + ρL0α

†
1T1 + ρL0 ρ

L
1T2 = zT0 (4.51)

ρR0 T0 − α0α
†
1T1 − α0ρ

L
1T2 = zT1. (4.52)
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We can consider χ†
1(z)T0 and χ†

2(z) as 2ℓ unknowns. At the same time we have 2ℓ

linear equations. So we have the unique solution as

χ†
1(z)T0 = T1 χ†

2(z)T0 = T2 (4.53)

More generally,

[CNΦN(z)T0]2n−1,2n = [zΦN(z)T0]2n−1,2n (4.54)

and

[CN T⃗ ]2n−1,2n = [zΦN(z)T⃗ ]2n−1,2n (4.55)

gives the relation χ†
2n−1(z)T0 = T2n−1, χ

†
2n(z)T0 = T2n if

χ†
2n−3(z)T0 = T2n−3, χ

†
2n−2(z)T0 = T2n−2. The last such equation is exactly the

boundary condition. This completes the proof.

Theorem 4.15. (a) The geometric multiplicity of z as an eigenvalue of CN is equal

to the geometric multiplicity of 1 as eigenvalue of MG
N(z), where

MG
N(z) = zβ†φR

N(z)φ
L,∗
N (z)−1 (4.56)

(b) The geometric multiplicity of z as an eigenvalue of CN is equal to the geometric

multiplicity of 1 as eigenvalue of MC
N(z), where

MC
N(z) = −zβ−1χ†

N(z)x
†
N(z)

−1 for N even (4.57)

MC
N(z) = −β−1χ†

N(z)x
†
N(z)

−1 for N odd (4.58)

Proof. We can directly use Proposition 4.13 and Theorem 4.9 to conclude this

theorem.

With this theorem, we can gain spectral information of the GGT and CMV

matrices with matrix entires, which have Nℓ×Nℓ dimension by analyzing a much

simpler matrix that has dimension ℓ × ℓ. This provides an algorithm to check

whether a number on the unit circle is an eigenvalue of the GGT and CMV matrix.
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