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Effects of strain-dependent surface stress on the
adhesive contact of a rigid sphere to a compliant
substrate†

Zezhou Liu, a Katharine E. Jensen, b Qin Xu,c Robert W. Style, c

Eric R. Dufresne, c Anand Jagotad and Chung-Yuen Hui *a

Recent experiments have reported that the surface stress of soft elastic solids can increase rapidly with

surface strain. For example, when a small hard sphere in adhesive contact with a soft silicone gel is

slowly retracted from its rest position, it was found that the retraction force versus displacement relation

cannot be explained either by the Johnson–Kendall–Roberts (JKR) theory or a recent indentation theory

based on an isotropic surface stress that is independent of surface strain. In this paper, we address this

problem using a finite element method to simulate the retraction process. Our numerical model does

not have the restrictions of the aforementioned theories; that is, it can handle large nonlinear elastic

deformation as well as a surface-strain-dependent surface stress. Our simulation is in good agreement

with experimental force versus displacement data with no fitting parameters. Therefore, our results lend

further support to the claim that significant strain-dependent surface stresses can occur in simple soft

elastic gels. However, significant challenges remain in the reconciliation of theory and experiments,

particularly regarding the geometry of the contact and substrate deformation.

1 Introduction

The importance of surface energy in surface science is well
established. However, a closely related but physically different
quantity, surface stress, is often neglected for solids. Its effects
are felt over a characteristic length scale, the elastocapillary
length, s/E, where E is the Young modulus and s the magnitude
of the surface stress. For conventional stiff materials (metals
and ceramics) its value is generally immeasurably small.1–4

However, elastomers, gels, biomaterials, and materials commonly
used in biomimetics are often very soft in comparison. For these
solids, the elastocapillary length can be tens of microns or larger.
This brings about a wide range of interesting mechanical
phenomena and properties. For example, surface stresses can
flatten or round off solid surfaces by deformation.5–8 Soft gel
surfaces can resist indention by surface stresses rather than by
bulk elasticity.9–11 The Hertz and Johnson–Kendall–Roberts (JKR)

theories for adhesionless and adhesive contact,12 respectively,
which are widely used to interpret indentation data, are no longer
applicable for soft solids and have to be reformulated.10,11,13–16

The contact angle in partial wetting is no longer governed by
Young’s equation – it depends on the surface stress of the solid
substrate as well as its elasticity.14,17–20 The deflection of thin
films of relative stiff materials can be substantially affected by
surface stress of the film and it is possible to exploit this
phenomenon to measure solid surface stress.21–25 Composites
with liquid inclusions can be stiffened by interfacial tension.26

However, the intensely investigated role of surface stress
addresses only the simplest constitutive behavior that a soft
solid surface can have. The majority of work reported so far for
soft solids takes the influence of the surface to be represented
by an isotropic, homogeneous, and strain-independent residual
stress.3 This is a natural approach since most of the soft solids
used in these experiments are gels and elastomers with a large
solvent component, which leads to the expectation that the
surface stress would behave similar to that of liquids. However,
it has long been theorized that solid surface stress can be
strain-dependent.27–29 Indeed, Gurtin and Murdoch30 raised the
question of whether solid surfaces possess elasticity (surface
Lame’ constants) in addition to a residual surface stress and this
has recently been demonstrated experimentally.25,31,32 However,
there is still some controversy on certain aspects of these
findings since the surface elastic constants measured in these
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experiments are surprisingly high. For example, Xu et al.31

reported that the surface bulk modulus of silicone gel is about
six times the surface tension at zero surface strain.

Of particular interest to us are the recent experiments by
Jensen et al.32 which lend further support to this extraordinarily
high strain-dependent surface stress of silicone gels. To put
this into perspective, let us begin by reviewing their experi-
ments and approach to data interpretation. The experiment
begins by moving a hard sphere (silica bead) into contact with a
silicone gel substrate at the vertical position D = 0, as shown in
Fig. 1(a), where D is the vertical distance between the bottom
of the sphere and the undeformed position of the silicone
gel surface. Due to adhesion, a tension force, F0, is required to
hold the sphere at D = 0. The sphere is then retracted slowly
(Fig. 1(b)) until final detachment between the sphere and gel.
During retraction, the force on the load cell F increases. During
most of the experiment, the contact line shrinks little until
some critical displacement, after which the contact line retracts
rapidly and detachment occurs. The dynamics during the
detachment was recently studied by Berman et al.;33 here we
focus on the force–displacement relation before detachment.

Two theories were proposed to explain the force–displace-
ment (F vs. D) data from initial contact through final detach-
ment: the extended JKR theory of Maugis34 and a standard
capillary theory based on a constant surface-strain-independent
isotropic surface stress.13 Specifically, the force versus D relations
predicted by these theories are:

FMaugis ¼ �3aK
2
�D� R

2
þ R2 � a2

4a
ln
Rþ a

R� a

� �
;

1

K
¼ 3

4

1� n2
E

� �

(1)

and

F fluid ¼ 2ps
a2

R
; (2)

where E is Young’s modulus of the gel, n is the Poisson’s ratio,
R is the radius of the sphere, a is the contact radius, and s is
the magnitude of the surface stress. From their experiments,
E = 5.6 kPa, n = 0.48, and R ranges from about 9 to 20 mm, s is
taken to be 20 mN m�1, and the initial contact radius a = a0 is
obtained from experiments. Thus, the elasto-capillary number
s0/mR lies between 0.18 to 0.4. However, both theories failed to
explain experimental data.

The failure of these theories is not difficult to understand.
Maugis’s theory does not account for the fact that surface

stresses can resist deformation. In addition, it is not valid for
large deformation. Here we note that the maximum displacement
in the experiments can easily exceed the radius of the sphere, so
linear elasticity theory is not expected to work. Although Maugis
used an exact sphere indenter profile instead of a paraboloid,
his analysis is still based on approximating the indenter as an
elastic half space, and small strain linear elasticity theory is
used throughout his analysis. Hence, the errors under large
deformation are expected to be of the same order as the JKR
theory. Indeed, Lin et al.35 have shown that, in the absence of
surface stresses, the JKR theory is more accurate than Maugis’s
theory for indentation depth less than the radius of the sphere.
Beyond that, both JKR and Maugis theories both break down.

The capillary theory fails because it is based on the assump-
tion that surface stresses is a constant, independent of surface
strain; it does not account for substrate elasticity – the gel is
treated as a simple fluid with no shear modulus. However,
recent experiments25,31,32 on the same and similar gel systems
showed that surface stresses increase rapidly with surface strain,
i.e., using a constant surface stress in eqn (2) will underestimate
the force, which is indeed the case.

Jensen et al.32 observed that the silicone meniscus below the
sphere resembles a liquid capillary bridge that can be fitted
by an axisymmetric surface with a constant mean curvature
starting from the contact line (red curve in Fig. 1(b)). They
quantified the size of this constant mean curvature region, DS,
by measuring the arc length along the surface profile from the
contact line to the place where it deviates from the experi-
mental data. They found that DS grows exponentially with the
imposed displacement D, and used DS as a measure of the
elastocapillary length, with the magnitude of the surface stress
at a given displacement D assumed to be given by

s(D) = s0DS(D)/DS0, (3)

where DS0 is the value of DS at F0 or at D = 0. Next, they replaced
the constant surface tension s in eqn (2) by s(D) in eqn (3) and
assumed that the elastic and surface stress contribution to the
external force is given by (1) and (2) respectively. By adding
these two contributions they were able to explain their force
versus displacement data. The increase in the magnitude of
the surface stress with surface strain is found to be consistent
with Xu et al.31

The obvious difficulties with this approach are:
(i) There is no rigorous justification for (3);
(ii) Superposition is not valid for large deformation, thus

the force contributions from elasticity and surface stress
(whether strain-independent or strain-dependent) may not be
simply summed;

(iii) The assumption of strain-dependent surface stress is
inconsistent with capillary theory, that is, eqn (2) is valid only if
the surface stress is a constant. Indeed, consider the curve in
the r–z plane of an axisymmetric surface (solid blue line in
Fig. 2). We parametrize this curve by its arc length s, and denote
the unit tangent, binormal and normal vectors by t(s), b(s) and
n(s) respectively. The surface stress, assumed to be isotropic
(but not necessarily to be strain-independent), takes the form

Fig. 1 Schematic of the experiment and problem statement. The dotted
line indicates the position of the undeformed gel surface.
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r = s(s)1s, where r is the true surface stress tensor, s(s) is the
magnitude of surface stress which depends on s, and 1s is
surface identity tensor in the deformed configuration. Static
equilibrium yields29,30,36,37

sbulknn ¼ sðsÞkðsÞ; sbulknt ¼
@sðsÞ
@s

; (4)

where k(s) is two times the mean curvature of the surface, and
sbulk

nn and sbulk
nt are the traction components of the traction

vector Tbulk ¼ rbulk
nn nðsÞ þ sbulknt tðsÞ of the bulk material right

underneath the surface. sbulk
nn and sbulk

nt are also known as the
Laplace pressure and Marangoni stress. However, even if k(s)
is a constant, s(s) varies from position to position since
it is strain-dependent. Hence, sbulk

nn cannot be constant and
sbulk

nt a 0 by eqn (4), which obviously violates the hydrostatic
state of stress demanded by capillary theory. In short, the
change in surface stress along s must be balanced by shear
stress exerted by the bulk, and hence a hydrostatic state of
stress is impossible.

2 Finite element model (FEM)

Given the above difficulties, we decided to simulate the experi-
ment using a finite element model which allows for large
deformation and strain-dependent surface stress. Specifically,
we simulated the surface mechanical behavior using a strain-
dependent surface stress model, i.e.,

r = [s0 + B(Js � 1)]1s (5)

where s0 is the magnitude of surface stress at zero surface
strain, B is the surface bulk modulus, Js is the determinant of the
surface deformation gradient tensor which is the ratio of the
surface area of a material element in the current and reference
configurations. This constitutive model has been implemented as
a new axisymmetric surface element in a FE program (ABAQUSs),

and the details are provided in the ESI.† Note that our surface
model eqn (5) does not include shear effects which was recently
discovered by Xu et al.25 Since our problem is axisymmetric, the
shear surface strain is identically zero; however, the surface
stress state can now be bi-axial. We will discuss this possibility
in the discussion.

The nonlinear elasticity of the substrate is assumed to be
governed by a neo-Hookean incompressible solid with strain
energy density function

W ¼ m
2
I1 � 3ð Þ; (6)

where I1 is the trace of the right Cauchy-Green deformation
tensor and m is the small strain shear modulus. Due to
incompressibility m = E/3. In our simulations, the material
properties of the bulk and surface are given by Jensen et al.,
i.e., E = 5.6 kPa, s0 = 20 mN m�1. The surface bulk modulus B in
all simulations is taken to be B = 6s0, as reported by Xu et al.31

for a similar gel. In this sense, there is no fitting parameter.
Our axisymmetric finite element model is shown schematically

in Fig. 3 and implemented in the commercial FEM software,
ABAQUSs. In our model, the silica sphere is modeled as an
analytical rigid sphere. Also, the new user-defined strain-
dependent axisymmetric surface elements are attached to the
surface to model the constitutive model given by (5).

Simulations are carried out using rigid sphere radii R
(from about 9 microns to 22 microns) as employed in the
experiments. The cross-section of the neo-Hookean substrate
is approximated by a square with the length of 2000 microns
(nearly 100 times the largest R). We verified that increasing
the size of the square does not affect the FE results. On the
boundaries of the axisymmetric axis (left edge) and right edge,

Fig. 2 Schematics of an axisymmetric surface. n, t and b are the unit
normal, tangent and binormal vectors to the blue curve in the r–z plane of
an axisymmetric surface.

Fig. 3 Schematic of axisymmetric finite element model. The silica bead is
modeled as a rigid sphere (solid black line) with radius R, and the elastic
substrate is approximated by a sufficiently large square (shaded region)
with neo-Hookean material.
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no radial displacement (in r-direction) or shear traction is
allowed; on the bottom edge, the vertical displacement
(in z-direction) and shear traction are both zero; on the top
boundary, the new user-defined surface elements (UEL) are
used to model surface stress. On the rigid sphere, a normal
displacement is prescribed in the z-direction while the radial
displacement is fixed to be zero. The surface stress on the rigid
body is ignored.

To simulate adhesive contact, we utilize the following
loading scheme devised by Xu et al.10 The system consisting
of the rigid sphere and the neo-Hookean half-space is loaded in
four steps, as illustrated in Fig. 4: (1) surface stress is applied
incrementally to the surface elements until it reaches s0. Note
in this step, there is no deformation anywhere; (2) a vertical
imposed displacement is applied incrementally on the rigid
sphere to push it down into the half-space, D o 0 resulting in a
finite contact radius a0. During this process, we enforce full-
friction contact. That is, there is no slip. (3) The vertical
displacement then is gradually reduced to zero (D = 0) with
the contact radius held fixed; the final stage of this step
corresponds to the initial state shown in Fig. 1(a). (4) We then
increase the vertical displacement on the sphere gradually
(D 4 0) with the contact radius fixed at a0 which corresponds
to Fig. 1(b). We repeat this procedure with different sphere radii R.

The initial contact radius a0 used in our simulations for
different sphere radius is obtained from the ESI in Jensen et al.
Here we note that, in experiments, the contact line slips a small
amount as the sphere moves upwards. Jensen et al.32 (ESI)
shows that when D = R, the initial contact radius decreases by
about 10%. Let us denote the contact radius and displacement
by ac and Dc just before rapid shrinkage occurs, typically when
F reaches its maximum value. In general, ac and Dc depend
on the radius of sphere and can be estimated from the ESI in

Jensen et al.32 To ensure accurate representation of experi-
ments, in all simulations, step 4 is modified by allowing
slippage of the contact line. Specifically, the contact radius a
at each imposed displacement is estimated by linear interpola-
tion between a0 and ac.

3 Results
3.1 Initial force F0 versus sphere radius R

Due to adhesion, an external tensile force F0 is required to hold
the sphere at D = 0. In Fig. 5, we plot F0 against sphere radius R.
The experimental data of Jensen et al.32 are plotted as symbols.
The F0 predicted using the extended JKR theory by Maugis
(eqn (1)) and capillary theory (eqn (2)) are also plotted in the
same figure for comparison. In addition, we also plot the
analytic solution by Hui et al.13 for the indentation problem
of a rigid sphere into an elastic substrate with surface stress
and adhesion (see the ESI† for details). It should be noted that
this solution is based on small deformation and more impor-
tantly, a constant surface stress, hence it will underestimate the
force at a given displacement if the surface stress increases with
surface strain. The procedures used to obtain this result are
given in the ESI.† Fig. 5 shows that the FE results impressively
match the experimental data without any fitting parameters,
while predictions by eqn (1), (2) and Hui et al.’s theory all
underestimate the force.

3.2 External force F versus displacement D

An additional check is to compare measured and computed
force–displacement relationships. Experimental data using
different sphere radii: 11.8, 15.1, 18.4 and 21.7 mm are com-
pared with our FE results in Fig. 6. Fig. 6 shows good agreement

Fig. 4 Four-step load scheme in FEA. The strain-dependent surface
elements (solid blue line) are attached to the surface of substrate (shaded
region). (a) No deformation occurs and surface stress is incrementally
applied to the value of s0; (b) rigid sphere (solid black line) is pushed into
the substrate creating a finite contact region, with radius a0; (c) the contact
radius is fixed at a0 while the rigid sphere is pulled back to the position
D = 0, corresponding to the initial stage of the experiments; (d) rigid sphere
is pulled upwards to D 4 0 to simulate the experiments.

Fig. 5 Initial contact force F0 plotted versus sphere radius R. Predictions
based on the extended JKR theory by Maugis, capillary theory and analytic
solution by Hui et al. are plotted as solid blue, dashed orange and dotted
green lines, respectively. Experimental results by are plotted as black
circles, and the finite element results are plotted as red squares.
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between the experiments and our simulations. Deviation from
experiments starts to occur near the maximum force, which
corresponds to rapid shrinkage of the contact line followed by
detachment. The FE results show that, to a good approximation,
there is a linear relationship between the force and displacement
before instability occurs, which is consistent with experiments.

3.3 Stress distribution in bulk elasticity on the surface and
surface stress distribution

We use our simulation to estimate the contribution to the
external force from surface stress and from elasticity, which

is difficult to measure in experiments. The components of true
stress in the substrate in the r–z plane are denoted by srr, szz

and srz. These stresses are evaluated on the substrate surface,
both inside and outside the contact region. Results are shown
in Fig. 7 and 8 for the case of a sphere with radius of 11.8 mm.
Fig. 7 shows that the stresses srr and szz reach their peaks at the
contact line, dropping rapidly over a short distance near the
contact line, and finally decay to a small value. The shear stress
srz is almost zero and negligible in the contact region. As the
displacement increases, szz increases while srz remains very
small in the contact region. It is interesting to note that part of
the contact always remains under compressive stress despite
the fact that D 4 0. However, comparison of Fig. 7a and b
shows that this region of compression decreases with increasing D,
as expected. In our simulations, we found that for sufficiently large
D, the contact region will be under tension.

The bulk elasticity contribution to the retraction force is
determined by integrating the normal true traction in the bulk
over the contact region,

Felastic ¼
ð
A

tzdA ¼
ð
A

srznr þ szznzð ÞdA (7)

where tz is the component of traction in the z-direction, and nr

and nz are the components of the unit normal vector to contact
region in the r- and z-directions, respectively. As shown in
Fig. 8, the external force is borne almost entirely by the surface
stress in the beginning of the experiment, where the applied
force is relatively small. For this case, elasticity’s contribution
to resisting deformation is small. This result is consistent with
the theory, for sufficiently small spheres, the force due to
surface stress and the applied force are in static equilibrium –
they form a Neumann triangle of forces. However, as the sphere
displacement D increases, bulk elasticity comes into play,
and the ratio of the contributions from bulk elasticity to surface

Fig. 6 External force F plotted versus sphere displacement D for different
sphere radius. Finite element results are plotted as symbols, and the
experimental results are plotted as dashed lines. The linear interpretations
of FEM results (solid lines) suggest a linear relationship between indenter
displacement and force.

Fig. 7 Stress components plotted versus radial distance using a 11.8 mm-radius sphere (a) D = 0 mm; (b) D = 8 mm. Stress components of srr, szz and srz

are plotted as solid blue, orange and green lines respectively. The vertical black dashed lines indicate the contact radii at given imposed sphere
displacements. In both (a) and (b), the region inside the contact is to the left of the vertical dotted line.
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stress increases. One should expect that elasticity will play a
stronger role for larger spheres. Theoretical results based on a
constant isotropic surface stress model13,15,16,38 suggest that
whether or not elasticity dominates depends on a single

dimensionless parameter o ¼ s0
mRð Þ2=3 9pWad=4½ �1=3

where Wad

is the work of adhesion between the sphere and the substrate.
A small o corresponds to the JKR limit where elasticity
dominates. This limit corresponds to small surface tension,
large spheres or stiff substrates. In the experiments of Jensen
et al.32 the maximum sphere radius is 21.7 mm. In the ESI,†
we compute the contribution of elasticity to the retraction force
for this case and do find a small increase in the contribution
due to elasticity. However, it is important to note that the use
of o relies on a constant surface stress, whereas in our case
the surface hardens substantially, so surface stress indeed
dominates elasticity in these experiments.

Finally, we plot the magnitude of surface stress versus the arc
length measured from the contact line, i.e., s = 0 in Fig. 9.
It demonstrates that the surface stress increases dramatically as
the contact line is approached.

4 Discussion

Our model based on the eqn (5) does remarkably well for
capturing the relation between force and displacement
observed in experiments. This result lends support to the very
large surface strain stiffening effect observed by Xu et al.25,31

However, we notice a discrepancy between the experimental
surface profiles (dashed blue line) and FE simulation (solid
orange line), as shown in Fig. 10. In the experiments, the
contact line is almost tangent to the sphere, suggesting total
wetting. Also, in the simulations we do not have a region of
constant mean curvature near the contact line which is
observed in experiments.

A possible way to capture this local total wetting phenom-
enon is to use a different model which involves bi-material and
bi-surface-stress behaviors. In this model, which we labeled as
FE 2, the bulk material near the contact line is assumed to be
fluid like, with a very small Young modulus, Ec (see Fig. 11 for a
schematic). Also, the surface stress in this region is assumed to
be isotropic and insensitive to surface strain and has magni-
tude s0. Away from this region, the surface stress is modeled by

Fig. 8 Contribution to the total external force from surface stress (orange
stacked area) and from elasticity (green stacked area) versus sphere
displacement, using an 11.8 mm-radius sphere. Ratio of the contributions
from bulk elasticity to surface stress increases as the sphere displacement
increases and resistance from bulk elasticity is no longer negligible.

Fig. 9 Surface stress versus arc length measured from the contact line
using a 11.8 mm-radius sphere. Solid blue, orange and green lines represent
different cases with sphere displacements D = 0, 4 and 8 mm respectively,
and dashed black line represents the surface stress at no stretch for
comparison.

Fig. 10 Surface profiles for a 17.4 mm-radius sphere extracted from
experimental data (dashed line) and finite element results (solid orange
and green lines for FE model 1 and FE model 2, respectively). The
experimental surface profile indicates the totally wetting phenomenon
near the contact line. Constant total curvature fits (dashed red lines) are
overlaid on the surface profiles.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
4 

Fe
br

ua
ry

 2
01

9.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
T

ex
as

 a
t D

al
la

s 
on

 4
/2

4/
20

19
 2

:2
4:

33
 P

M
. 

View Article Online

http://dx.doi.org/10.1039/c8sm02579g


This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 2223--2231 | 2229

eqn (5) and the bulk property is modeled by eqn (6). We then
simulate the retraction process using this new model. In the
simulation, the s0 in both regions are identical and is the same
as FE 1 (the model we have used throughout this work), while
the modulus Ec is used as an adjustable parameter to fit the
experimental surface profile. This fit (FE 2) is plotted in Fig. 10.
The fitted surface profile (solid green line) agrees reasonably
well with experiment where there is a region of constant mean
curvature region (dashed red lines). However, this model will
underestimate the force versus displacement, as shown in the
ESI.† In other words, the force predicted by a model with fluid
like behavior near the contact line is inconsistent with the
experimental data. Although model FE1 struggles to reproduce
the experimental surface geometry, it does a much better job
reproducing the forces of soft adhesion than other models.
Significant further work will be required to reconcile the
difference in geometry.

There is another possibility: the absence of a constant mean
curvature region near the contact line can be due to a surface
stress that is non-isotropic, as reported recently.25,31 We also
carried out simulations using a surface stress model of the
form where the surface energy density function W allows for
surface shear. The surface moduli in these calculations are
chosen so that when the surface is subjected to an equiaxial
state of stress, the surface stresses are consistent with the
isotropic surface model in eqn (5). As mentioned earlier,
axi-symmetry in this problem disallows surface shear strain/
stress but does allow a bi-axial surface stress state. However, the
surface profiles in these simulations do not show a region of
constant mean curvature and are practically identical to the
surface profiles obtained using the isotropic surface model
eqn (5). Details of these simulations can be found in the ESI.†

An anonymous reviewer suggested that perhaps strain hard-
ening of the gel can contribute to this discrepancy. This
reviewer has observed that the stress state in Fig. 7b is close
to be hydrostatic, with magnitude about 4 times the Young’s
modulus of the gel. However, in an incompressible solid,
hydrostatic stress has no effect on deformation – the maximum
principal stretch ratio in our simulations at the contact line is
actually quite moderate, less than 2.7 for the case of D = 8
microns; therefore, one expects the neo-Hookean model should
give a reasonable representation of the material behavior in this
regime. This is certainly the case for elastomers (see Fig. 2 of
Boyce and Arruda39) where the neo-Hookean model gives a good
approximation to the nominal stress versus stretch behavior
for extension ratios less than 3. Indeed, a typical elastomer
subjected to simple tension will strain softens slightly at a stretch
ratio of around 2.5, then hardens at stretch ratio of 5 to 6 – well
beyond the maximum stretch we observed in our simulations.
As a further check, we carried out one simulation (sphere radius
R = 11.8, sphere displacement D = 8 microns) using a constitutive
model (Yeoh solid) that allows for strain hardening. The strain
energy density function W of the Yeoh solid is

W ¼
X3
k¼1

Ck I1 � 3ð Þk; (8)

where the Ck’s are material parameters with units of stress, I1 is
the trace of the right Cauchy–Green tensor and k controls the
amount of strain hardening. In this model C1 = m/2 where m
is the small strain shear modulus. It should be noted that the
neo-Hookean model is a special case of the Yeoh model with
C2 = C3 = 0. We use the same small strain shear modulus
and surface model in this simulation, and set C2/C1 = �0.005,
C2/C3 = 0.0001. The choice of these parameters and details are
given in the ESI.† As expected, we do not find any difference
between the surface profiles as well as the stress distribution at
the contact line. Therefore, we believe that strain hardening is
not the reason why the meniscus shape could not be captured.

The experiments and theory both indicate that force is
linearly related to the displacement during retraction as long
as the contact is fixed. This has to be the case for small
deformation and a linear elastic material since the geometry
is fixed. Indeed, for JKR theory, the relationship between force F
and displacement D at fixed contact radius a is given by

D�D0 ¼
F � F0

8ma
(9)

where D0 and F0 are the initial displacement and force, respectively.
The quantity 1/8ma is the compliance of a rigid cylindrical
punch of radius a bonded to an infinite block of incompres-
sible elastic substrate. For an incompressible elastic substrate
with a constant isotropic surface stress, eqn (9) is modified to

D�D0 ¼
f s0=2mað Þ

8ma
F � F0½ �: (10)

The dimensionless function f depends only on the Elasto-
capillary number and is given by (3.20a) in Hui et al.13 What is
surprising is that this linear relation remains valid for large

Fig. 11 Bi-material and bi-surface-stress finite element model. The light
gray region represents the near-field structure with an extremely low
Young’s modulus; and surface stress is constant inside the dotted region
and is strain dependent outside.
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deformation as demonstrated by Liu et al.9 For our case the
solution is more complicated, since the compliance also
depends on the ratio of stiffening coefficient B and s0. We have
not been able to obtain a simple expression for this compliance.
Nevertheless, our finite element method can be used to deter-
mine this relation for any given B and s0. In experiments, the
elastic modulus, the contact radius, the displacement and force
can be readily obtained. Thus, B and s0 can be determined by
matching simulation results to force versus displacement data.

5 Conclusions

We have shown that strain-dependent surface stresses can
provide a dominant contribution to the force–displacement
curve of a rigid spherical contact on a compliant substrate.
These findings corroborate the interpretation of recent experi-
ments by Jensen et al.32 and raise a number of important issues
and opportunities. From an applications perspective, they
suggest an exciting new design space for engineering soft
adhesive contacts with tunable surface stresses. They also
indicate that new design rules may be needed for these materi-
als. In particular, the simple linear force–displacement rela-
tionship observed in both the experiments and our simulations
calls for a parametric study to reveal the dependence of the
contact stiffness on material properties and contact geometry.

In the shorter term, significant challenges remain in the
reconciliation of theory and simple experiments, especially
regarding the geometry of the contact and substrate deforma-
tion. It is natural to hypothesize that the capillary-bridge shape
of the contact zone could actually be comprised of solvent
extracted from the gel, but other previous observations contra-
dict this hypothesis. Phase separation of solvent around an
adhesive contact in the same material system was thoroughly
investigated in Jensen et al.40 There, the volume of phase-
separated solvent was found to increase with the volume of
indentation, suggesting that there should be no phase separa-
tion under net tension, investigated here. Further, the dynamics
of the failure of the adhesive contacts in this same system was
recently described in Berman et al.33 In that study, the failure
of the contact and the relaxation of the substrate was found to be
distinctly solid-like, with no suggestion of a role for phase-
separated fluid in a stretched adhesive contact.

It is possible that the discrepancy between the observed and
calculated substrate surface deformations may arise from
ambiguities in the contact conditions at the sphere-substrate
interface. For one, there are no experimental measurements of
how the substrate deforms during the establishment of contact
that could be compared to the numerical protocol shown in
Fig. 4. Additionally, the existing calculation does not impose
a boundary condition for the contact angle at the three-
phase contact line. While such a boundary condition has been
suggested by several works,11,41,42 its form is not established,
and consequently the simulations lack an appropriate contact
line condition. Both of these considerations will be the subject
of further experimental and theoretical study.
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