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Surface stresses have recently emerged as a key player in the mechanics of highly compliant solids.
The classic theories of contact mechanics describe adhesion with a compliant substrate as a competition
between surface energies driving deformation to establish contact and bulk elasticity resisting this.
However, it has recently been shown that surface stresses provide an additional restoring force that can
compete with and even dominate over elasticity in highly compliant materials, especially when length
scales are small compared to the ratio of the surface stress to the elastic modulus,ϒ=E. Here, we investigate
experimentally the contribution of surface stresses to the total force of adhesion. We find that the elastic and
capillary contributions to the adhesive force are of similar magnitude and that both are required to account
for measured adhesive forces between rigid silica spheres and compliant, silicone gels. Notably, the strain
dependence of the solid surface stress contributes to the stiffness of soft solid contacts at leading order.
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Soft solids can make excellent adhesives because they
can conform to establish intimate contact, even on very
rough surfaces [1,2]. Applications of soft or “pressure-
sensitive” adhesives range from the ubiquitous sticky note
to large-scale building construction [2], from everyday
adhesive bandages to new developments toward improved
surgical techniques [3]. The true test of any adhesive
material is how it responds to an externally applied force.
Does it stick and stay stuck, and how much force can it
sustain before unsticking? Even though soft adhesives are
widely used, answering these seemingly simple questions
remains an area of active research [4–14].
When a soft solid conforms into adhesive contact with an

uneven surface, it is well understood that bulk elasticity
opposes this deformation [15–17]. However, a number of
recent experiments have demonstrated that for highly
compliant solids, elasticity is not always enough to describe
the mechanical response [6,18–31]. Rather, an additional
restoring force can arise from the solid surface tension ϒ,
which opposes the stretching of the surface required to
conform into contact. This solid surface stress can compete
with or even dominate over the elastic modulus E in
determining the mechanics of soft materials, at least on
length scales that are small compared to an elastocapillary
length, Lc ¼ ϒ=E.

Meanwhile, surface stresses are still ignored in the
standard theories of adhesive contact mechanics [15–17].
Recent insights into elastocapillary phenomena suggest that
a new approach is needed to interpret contact measure-
ments on soft materials, from characterizing cancer cells
using atomic force microscopy to soft-adhesives develop-
ment [32–34]. Theoretical studies have begun to investigate
the contributions of surface stresses to adhesion with
applied forces [10,35], but there are still only very limited
experimental data [36].
In this paper, we investigate the roles of surface tension

and elasticity in adhesion with applied force. We directly
measure the adhesive forces and contact geometry between
compliant solid substrates and small rigid spheres during
quasistatic separation. We find that classic theories of
contact mechanics fail to account for either the forces or
the shape of the contact zone. On the other hand, the
measured forces are reasonably described when a simple
estimate of the contribution of surface stress is added to the
standard elastic predictions. We find that the strain depend-
ence of the solid surface stress plays an essential role in
these phenomena.
We study the pull-off of small glass spheres from

compliant, silicone gel substrates. The gels are prepared
by mixing liquid (1 Pa s) divinyl-terminated polydime-
thylsiloxane (PDMS) (Gelest, DMS-V31) with a chemical
cross-linker (Gelest, HMS-301) and catalyst (Gelest,
SIP6831.2) (as in Refs. [11,26]). We degas the mixture
in vacuum and then deposit a layer along the millimeter-
wide edge of a standard microscope slide. After curing at
68 °C overnight, the resulting solid silicone substrate is
about 300 μm thick, flat parallel to the long edge of the
microscope slide, and very slightly curved (radius of
curvature about 700 μm) in the orthogonal direction
[11]. The cured PDMS substrate has a Young modulus
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of E ¼ 5.6 kPa, and the Poisson ratio of the gel’s elastic
network is ν ¼ 0.48 [11,37]. Bulk tensile tests show that
the gel is linear elastic to about 10% true strain and
moderately strain stiffening thereafter [38].
For rigid, spherical indenters, we use untreated silica

spheres ranging in radius from 7.9 to 32.0 μm
(Polysciences, 07668). We rigidly attach the spheres to
the ends of either rigid, tapered glass rods or solid-state
capacitive force probes (FemtoTools, FTS 100) using two-
part 5-minute epoxy (Elmer’s), waiting at least 6 minutes
after mixing to ensure that the glue does not flow over the
sphere surface. For the spheres attached to tapered glass
rods, we control the position manually with submicrometer
precision using a 3-axis micromanipulator stage (Narishige
MMO-023). For the spheres attached to the force probes,
we control the position using a 3-axis piezo stage with
1-nm accuracy (FemtoTools). Either indentation system
is mounted on a standard inverted microscope, and the
contact zone is imaged from the side with a 40× (N.A. 0.60)
objective, as described previously [11,38].
We begin each experiment by bringing a sphere into

initial adhesive contact with the solid silicone gel substrate
at a vertical position D ¼ 0, where D is defined as the
distance between the initial, undeformed surface and the
bottom of the sphere, as shown in Fig. 1(a). We approach

the substrate slowly until the bottom of the sphere just
touches an initially flat region of substrate that has not
been contacted previously. We identify contact either as the
first position where we register a measurable force on the
sphere or where we visually observe the compliant sub-
strate suddenly deforming into contact with the sphere.
High-speed imaging indicates that the initial contact
deformation is complete in less than a second [39]. The
rigid attachment of the sphere prevents it from sponta-
neously indenting into the substrate [6,11], so at the start of
the experiment, an initial tensile force F0 is already
required to hold the sphere at D ¼ 0.
We wait about 10 minutes after initial contact in order

to ensure the system is in equilibrium before beginning
each experiment. We then quasistatically withdraw the
sphere from the surface (D > 0) at a slow, controlled rate
of 0.1 μm=s. A series of example images from a typical
experiment on a 10.0-μm-radius sphere are shown in
Fig. 1(b)–1(e). At initial contact [Fig. 1(b)], we already
observe significant local deformation of the substrate. As
we subsequently pull the sphere away from initial contact,
the contact area stays nearly constant, decreasing only
slightly as we approach the last stable position [Fig. 1(e)].
After this position, the contact line begins to slide rapidly
toward a point at the bottom of the sphere where it finally
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FIG. 1. Structure and force of soft adhesive contacts. (a) Schematic of the experiment. A force F is required to hold the sphere rigidly
at each displacement D. (b–e) Raw images of adhesive contact between a 10.0-μm-radius sphere and an initially flat, compliant silicone
substrate with a Young modulus of E ¼ 5.6 kPa. (See Ref. [39] for movies of initial contact and quasistatic pull.) (f) Examples of force-
displacement measurements for a range of sphere sizes from initial contact through detachment. Sphere radii are labeled. The shaded
region indicates the part of the stable contact regime that is fit to measure the initial contact stiffness. (g,h) Initial contact force F0 and
initial contact stiffness k0 plotted vs sphere radius R, respectively. Elastic contact mechanics predictions [17] are overlaid as blue dot-
dashed lines. Simple capillary predictions with a fixed value of surface stress, ϒ ≈ 0.02 N=m [11], are plotted as red dashed lines.
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detaches. For smaller displacements, the solid adhesive
bridge between the bulk of the substrate and the sphere is
stable.
Examples of raw force-displacement data from initial

contact (D ¼ 0) through detachment for several sphere
sizes are shown in Fig. 1(f). We measure the total force F
required to hold the sphere rigidly at each displacement.
All force-displacement measurements start with an initial
tensile contact force F0 that increases with sphere size, as
shown in Fig. 1(g). From initial contact, the force then
increases linearly with displacement. The initial contact
stiffness, k0 ¼ dF=dDjD¼0, of this springlike regime also
increases with sphere size, as shown in Fig. 1(h). Varying
the displacement rate to be 2× slower or up to 10× faster
affects the peak force and the distance to detachment but
has no measurable effect on F0 or k0. Repeat measurements
with the same sphere in different locations are extremely
consistent, varying only in the detachment regime.
If the measured adhesive forces were due entirely to

elastic restoring stresses, we could estimate the total force
using classic adhesive contact mechanics as extended by
Maugis for large contact radii [17]:

FEL ¼ 2Ea
1 − ν2

�
−D −

R
2
þ R2 − a2

4a
ln
Rþ a
R − a

�
: ð1Þ

We use this relation to calculate elastic theory predictions
for both initial contact force F0;ELðRÞ and initial contact
stiffness k0;ELðRÞ, overlaid on our data as blue dot-dashed
lines in Figs. 1(g) and 1(h). To generate a smooth curve,
we interpolate the measured contact radii (as described
in Ref. [39]). Since a is only very weakly dependent
on D, decreasing ≲10% over the entire stable contact
regime, we approximate it as constant for small D in
estimating k0;ELðRÞ.
Elastic theory consistently underestimates both the initial

contact forces and the initial contact stiffness. One could
improve the elastic calculation by accounting for nonlinear
elasticity or large deformations using finite elements
[35,40]. Instead, we consider possible contributions to
the force from solid surface stresses.
In the absence of a complete elastocapillary adhesion

theory, we calculate the capillary force contribution as the
integral of the surface stresses ϒ at the contact line [10]:

FCL ¼ 2πa sinðΘÞϒ: ð2Þ

Here, Θ is the angle from the horizontal at which the
surface leaves the contact line. As we have total wetting
between the substrate and spheres [11], sinðΘÞ ¼ a=R, and
Eq. (2) simplifies to FCL ¼ 2πða2=RÞϒ. Note that this is
the familiar approach to determining the force exerted by a
liquid bridge [41,42].
We plot the predictions of this capillary theory as red

dashed lines in Figs. 1(g) and 1(h), again assuming a ≈ a0

for smallD. For this calculation, we use the measured zero-
force surface tension, ϒ0 ≈ 0.02 N=m [11]. The capillary
prediction for the initial force is significant, of the same
order of magnitude or larger than the elastic predictions.
This additional restoring force roughly accounts for the
entire discrepancy between the measured initial contact
forces and the elastic predictions. However, because Eq. (2)
lacks any explicit dependence on sphere displacement, this
simple contact line force model does not contribute to the
contact stiffness, which remains underestimated.
To gain more insight into the interplay of elastic and

surface stresses during soft adhesion with applied force, we
examine the structure of the contact zone. From the raw
image data, we map the dark profile of the sphere and
silicone substrate with 100-nm resolution using edge detec-
tion in MATLAB [11]. We also map the undeformed surface
before and after the experiment to establish the zero position
of the coordinate system and to check for any permanent
deformation or image drift. Figure 2(a) shows the measured
substrate surface profiles (overlapping gray points) extracted
from the raw image examples in Figs. 1(b)–1(e), shifted so
that the sphere remains in a fixed position (black circle).
Since the deformation is axisymmetric, each 2D profile
contains the full 3D deformation profile.
The elastic theories of contact mechanics make predic-

tions not only for the expected forces but also for the
substrate deformation profile as a function of sphere
radius, contact radius, and elastic moduli [17]. We plot
these predictions with no free parameters as blue lines on
the left side of Fig. 2(a). For all deformations, we find that
the elastic theory works well in the far field but fails to
describe the shape of the surface close to the contact line.
Fitting with the Maugis theory by allowing the contact
radius or sphere position to vary only does a marginally
better job in describing the substrate deformation.
Even though the silicone meniscus below the sphere

is solid, it bears a remarkable resemblance to a liquid
capillary bridge. Inspired by this similarity, we test how
well a purely capillary theory describes this shape by fitting
it with a surface of constant total curvature κ starting from
the contact line [11]. We plot these fits as red lines on the
right side of Fig. 2(a), extending the curves beyond the fit
region to make it clear where they begin to deviate from the
data. Note that the measured total curvatures are typically
nonzero, and that they change with sphere displacement.
Unlike a liquid, an elastic solid can sustain internal pressure
gradients, so it does not need to have the same curvature
everywhere. In control experiments with un-cross-linked
PDMS fluid in the same experimental geometry, we find
that the pure capillary solution works everywhere with a
total curvature of zero, independent of sphere position, as
expected for a liquid meniscus equilibrated with a flat far
field in the absence of gravity.
The pure capillary solution fits the measured surface

profile of the soft solid extremely well close to the contact
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line, precisely where the elastic solution fails, but it
deviates from the measured profile in the far field, where
the elastic solution works well. We quantify the size of this
domain of constant curvature, ΔS, by measuring the path
length along the profile from the contact line to the end of
where the capillary solution fits well. We plotΔS and −κ vs
sphere displacementD over the entire stable contact regime
in Figs. 2(b) and 2(c) for the same experiment as in Fig. 2(a)
(black circles), as well as for an 18.8-μm-radius sphere
(blue triangles) and a 32.0-μm-radius sphere (red squares).
The domain of constant curvature expands roughly expo-
nentially with displacement; simultaneously, the magnitude
of the curvature drops roughly exponentially.
We plot the sphere-size dependence of the domain size,

ΔS, and the magnitude of the curvature, −κ, at D ¼ 0 in
Figs. 2(d) and 2(e). Over a factor of 3 in particle radius, the
initial inverse curvature (red squares) remains unchanged,
while the domain of constant curvature (blue triangles)
increases slightly. The initial size of the capillary-
dominated domain isΔS0 ¼ 5.5� 0.6 μm, while the initial
inverse curvature at D ¼ 0 is −1=κ0 ¼ 3.5� 0.4 μm.
These values are both comparable to the expected zero-
force elastocapillary length: ϒ0=E ¼ 3.6 μm.
We plot fitted values of length scales associated with

the exponential growth or decay of the domain size (blue

triangles) and curvature magnitude (red squares) on a log-
log scale in Fig. 2(e). Both of these values display a roughly
square-root dependence on the sphere radius over this range
of sphere sizes. Consequently, an additional length scale
emerges from the dependence of the contact geometry on
the sphere displacement. By fitting the exponential length
scales to a function of the form L ¼ ffiffiffiffiffi

lR
p

, we obtain values
for this new length scale of lΔS ≈ 8.2 μm and lκ ≈ 5.2 μm,
both 1.5× larger than their corresponding initial length
scales.
The contact profiles demonstrate a crossover from a

capillary-dominated near field to an elastically-dominated
far field, typical of elastocapillary behavior in soft materi-
als. The transition between these domains is determined by
the elastocapillary length, which is usually assumed to be a
material constant [30]. Here, the dramatic increase of ΔS
with sphere displacement suggests a concomitant increase
in the elastocapillary length with deformation. There are
two ways that the elastocapillary length can grow with
strain: Either the elastic modulus drops, or the surface
stress increases. Bulk tensile tests rule out the former,
showing instead moderate strain stiffening at large strains.
Therefore, a growing elastocapillary length can only arise
from a strain-dependent surface stress that increases with
substrate surface deformation.
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FIG. 2. Geometry of soft adhesive contact. (a) Mapped profiles from the same images shown in Figs. 1(b)–1(e) (overlapping gray
points). Predictions from elastic theory [17] are overlaid on the left (blue lines). Constant total curvature fits are overlaid on the right (red
lines). (b) Size of the domain of constant curvature ΔS vs sphere displacement D for three example experiments with spheres of radius
10.0 μm (black circles), 18.8 μm (blue triangles), and 32.0 μm (red squares). (c) Total curvature −κ vsD for the same three examples as
in (b). (d) Plot of fit initial length scales vs sphere radius R: ΔS0 (blue triangles, mean � std dev ¼ 5.5� 0.6 μm) and −1=κ0 (red
squares, mean�std dev ¼ 3.5� 0.4 μm). (e) Log-log plot of fit exponential length scales LΔS (blue triangles) and Lκ (red squares) vs R.
Lines of slope 1 (dot-dashed line) and slope 1=2 (dashed line) are shown as guides to the eye.
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Inspired by these observations, we recently completed a
complementary study directly measuring the strain-
dependent surface stress of similar silicone gels and found
that it is indeed very sensitive to the surface strain of the
material [38]. In that case, we found that the strain
dependence is described by a surface modulus Λ such that
ϒðϵÞ ¼ ϒ0 þ ϵΛ, where Λ ≈ 6ϒ0. The surface modulus
also introduces a new length scale Λ=E, which, for the
silicone gels used in that study, is about 6 times the zero-
strain elastocapillary length.
Armed with these insights into the strain dependence

of the surface stress, we revisit our estimate of capillary
contributions to adhesive forces. The complex strain state
of these adhesion experiments makes a direct measurement
of the surface modulus very difficult. We therefore estimate
the scaling of ϒ with D by taking the size of the domain
of constant curvature as an approximate measure of the
elastocapillary length. Thus, we estimate the effective
surface stress for a given deformation to be simply
ϒ ≈ϒ0ΔS=ΔS0. Inserting this into Eq. (2) and using the
mean values of the exponential fit parameters, we recalcu-
late the capillary contributions to the total adhesive force
over this range of sphere sizes, plotted as red dashed lines in
Figs. 3(a) and 3(b). As implemented, the strain dependence
of the surface stress has no impact on the force at initial
contact [Fig. 3(a)]. However, it significantly impacts the

stiffness of the contact [Fig. 3(b)]. The sum totals of
the elastic and strain-dependent capillary contributions
are plotted as solid gray lines in Figs. 3(a) and 3(b).
Although these are simple calculations, they capture the
magnitude and scaling of both adhesive force and contact
stiffness over this range of particle sizes.
This approach does remarkably well even at large

deformations. We plot the measured force-displacement
data for a single example experiment as black circles in
Fig. 3(c). For comparison, we calculate all of the variants of
the force predictions, using the contact radius and growth of
the constant curvature domain as measured from the images
for this experiment: the elastic prediction FEL [17] (blue
dot-dashed line); the capillary predictions FCL, with both a
fixed value of surface stress ϒ ¼ ϒ0 (red dot-dashed line)
and a strain-dependent surface stress ϒ ≈ϒ0 exp ðD=LΔSÞ
(red dashed line); and the sum total forces, using both the
fixed value of surface stress (gray dot-dashed line) and
the strain-dependent surface stress (gray solid line). The
estimate with a fixed ϒ ¼ ϒ0 increasingly fails to describe
the data as D becomes large. However, the total force
combining elastic and strain-dependent capillary contribu-
tions is in remarkable agreement with the measurements
again, despite the simplicity of our approach.
We have seen that theories of contact mechanics

accounting only for bulk elasticity capture neither adhesive
forces nor contact geometry in soft adhesion. Rather,
capillary forces arising from the surface stress of the
compliant solid can contribute significantly to the total
force. However, simply including a fixed surface tension is
not enough. Strain-dependent surface stresses are required
to account for the structure and stiffness of soft adhesive
contacts. While our simple estimate of contact forces does a
surprisingly good job, a complete elastocapillary theory of
adhesion including strain-dependent surface stress needs to
be developed. In particular, contributions from the inter-
facial curvature through the generalized Laplace-Young
relation may need to be considered [30].
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