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Direct measurement of strain-dependent solid
surface stress
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Surface stress, also known as surface tension, is a fundamental material property of any

interface. However, measurements of solid surface stress in traditional engineering materials,

such as metals and oxides, have proven to be very challenging. Consequently, our under-

standing relies heavily on untested theories, especially regarding the strain dependence of

this property. Here, we take advantage of the high compliance and large elastic deformability

of a soft polymer gel to directly measure solid surface stress as a function of strain. As

anticipated by theoretical work for metals, we find that the surface stress depends on the

strain via a surface modulus. Remarkably, the surface modulus of our soft gels is many times

larger than the zero-strain surface tension. This suggests that surface stresses can play a

dominant role in solid mechanics at larger length scales than previously anticipated.
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A ll material surfaces are characterized by a surface energy
and a surface stress. The difference between these material
properties is important: the surface energy, γ, is a scalar

equal to the minimum work per unit area to cut a solid, whereas
the surface stress, ϒij, is a tensor that describes the in-plane force
per unit length required to stretch a surface. In simple liquids, the
surface stress and surface energy have the same magnitude (ϒij=
γδij) and are independent of any deformation. In solids, both
quantities are expected to be strain dependent. For small defor-
mations, they are related through the Shuttleworth equation1,

ϒij ¼ γδij þ
∂γ
∂ϵsij

; ð1Þ

where δij is the identity tensor and ϵsij is the surface strain tensor.
For nearly 60 years, Eq. (1) has served as the foundation for a
well-established body of theory and computation including rig-
orous analyses of how surface stress can be incorporated into
physical models2, 3, predictions for ϒijðϵsijÞ in a variety of mate-
rials4–6, and an extensive literature anticipating the role of strain-
dependent surface stresses across various phenomena in nanos-
tructures and nanocomposites7–12. Apart from some indications
that ϒij≠ γδij (e.g., see refs. 13, 14), there is sparse direct experi-
mental evidence to support these theories. In particular, we are
unaware of any experiments that have been able to measure
strain-dependent surface stresses in a solid material15.

Here we directly measure surface stress as a function of strain
in a compliant polymer gel. In such materials, surface stresses can

be important at the micrometer scale and can be directly mea-
sured from the structure of a three-phase contact line using a light
microscope16. In the range of accessible strains (up to 25%),
surface stresses increase linearly. The effect is not subtle: surface
stress doubles with only 17% strain.

Results
Structure of a soft solid contact. To clearly visualize the impact
of strain-dependent surface stress, we first image extreme defor-
mations of a soft solid. We bring rigid glass spheres with radii
from 7.9 to 32.1 μm into adhesive contact with ~300 μm-thick,
compliant, silicone gel substrates (Young’s modulus E= 5.6 kPa)
and quasi-statically retract them, as shown schematically in
Fig. 1a, b. Below a critical displacement, a solid, axisymmetric
bridge of silicone stably connects the spheres to the substrates, as
shown in the example optical micrographs of Fig. 1c-f.

As we pull on such an adhesive contact, the solid silicone
bridge between substrate and sphere takes on a remarkable shape,
resembling a liquid meniscus. This not only differs from the
predictions of classic linear elastic theory17, 18, shown as red lines
at left in Fig. 1g, but also from recent large-deformation
simulations of Neo-Hookean solids19. Alternatively, we test the
correspondence with a liquid meniscus by fitting the profiles to
surfaces of constant total curvature, shown as green curves at
right in Fig. 1g. The curves capture the shape of the solid free
surface near the contact line. In this example, at first contact
(Fig. 1c) the total curvature is −0.29 μm−1. As the bead is
retracted, the magnitude of the curvature drops, decreasing to
−0.01 μm−1 at the last recorded stable position (Fig. 1f). It is
noteworthy that, as the size of the domain of constant curvature
increases, the curvature drops. Thus, the adhesion profile
increasingly resembles adhesion to an infinite liquid substrate.

Why should the free surface assume a liquid-like shape near
the contact line? Recent theory and experiment, reviewed in ref.
20, have found that surface stresses dominate bulk elastic stresses
at wavelengths smaller than a characteristic elastocapillary length
scale, ϒ/E20. Thus, we expect a capillary-dominated near field
within this distance of the three-phase contact line. The size of the
domain of constant curvature at initial contact in Fig. 1c is 5.1
μm, defined as the path length over which the capillary solution
fits the measured profile. Indeed, this is comparable to the
previously measured elastocapillary length
ϒ/E for this material, about 4 μm21. However, the size of the
constant curvature domain does not remain constant with
deformation. Rather, it increases dramatically with sphere
displacement, reaching 31.8 μm at the last stable position in
Fig. 1f.

The growth of this solid meniscus with increasing strain
suggests a proportional increase in the elastocapillary length, ϒ/E.
This can only be due to an increase in the surface stress with
tensile strain, as Young’s modulus is constant up to ~10% strain
and then increases slightly thereafter (see Supplementary Infor-
mation). This suggests a more than sixfold increase in ϒ during
the deformation in Fig. 1. However, this experimental geometry is
not well-suited to a quantitative measurement of the relationship
between surface stress and strain. The strain in the solid meniscus
is highly inhomogeneous and the size of the domain of constant
curvature depends on both the bulk and surface mechanical
properties.

Microscopic wetting profiles. Instead, we designed wetting
experiments that allow us to measure directly the local relation-
ship between surface stress and strain. We measure the macro-
scopic and microscopic structure of the contact line of glycerol
droplets on soft silicone substrates (E= 3.0 kPa) as we apply a
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Fig. 1 A solid meniscus in soft adhesion. a, b Schematic of the experiment at
a initial contact and b during quasi-static pull. c–f Raw snapshots of a
17.4-μm-radius sphere adhered to an initially flat, compliant (E= 5.6 kPa)
silicone gel substrate as it is pulled quasi-statically from c first contact to
f the last measured stable position (scale bar in c: 20 μm). g Mapped
deformation profiles (black points) corresponding to (c)–(f), with predictions
of classic elastic theory17, 18 overlaid at left (red lines), and best-fit constant
total curvature surfaces overlaid at right (green lines) (scale bar: 20 μm)
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uniform biaxial strain, ϵ1, as shown schematically in Fig. 2a–c.
Although the macroscopic contact angle for large droplets
depends only on the surface energies (Fig. 2a)22, the microscopic
structure at the contact line with such a soft substrate is governed
by a balance of surface stresses (Fig. 2c)16, 23–25.

Macroscopic measurements on large droplets show no change
of the contact angle with applied strain; it always re-equilibrates
to its original value of θ= 90.8° following a stretch (Fig. 2d–f and
Supplementary Fig. 3). This demonstrates that there is no
significant contact-line hysteresis, and that the surface energies of
the solid–liquid and solid–vapor interfaces are nearly identical.

The microscopic structure of the contact line, on the other
hand, reveals the surface stresses16. Within distances from the

contact line of ϒ/E, each of the three intersecting interfaces
becomes straight and has an orientation given by the mechanical
balance of the surface stresses, as shown in Fig. 2c. Importantly,
this shape is defined locally and is independent of the bulk elastic
properties of the material. We measure the profile of the silicone
substrate near the contact line using confocal microscopy, initially
with zero applied strain. The substrate forms a symmetric wetting
ridge at the contact line, as seen in Fig. 2g. With no applied strain,
the ridge is ~10 μm high and has an opening angle α= 91.2°,
determined by fitting the region close to the contact line as
intersecting lines.

Knowing the shape of the substrate near the contact line, we
can measure the local surface stress by applying the force balance
of Fig. 2c. As the macroscopic contact angle is nearly 90°, we
know that the liquid–air interface divides the opening angle α
nearly equally and the horizontal force balance reduces to ϒLG≈
ϒGV=ϒ26. Balancing the surface stresses along the vertical axis
further requires that ϒ=ϒLV/(2 cos(α/2)), where ϒLV is the
liquid–vapor surface tension, which we measured to be
41± 1 mNm−1 for glycerol droplets in contact with the silicone
substrate (see Methods section). The result is a measured solid
surface stress of ϒ= 29 mNm−1, ~50% larger than the surface
tension of silicone liquids and consistent with our previous
measurements using a similar experimental geometry16.

In marked contrast to the macroscopic measurements, the
microscopic contact line geometry changes significantly when we
stretch the substrate. The contact line geometry for the same
droplet at different values of applied biaxial strain, ϵ1, is shown
in Fig. 2g. To ensure that the contact line has reached
equilibrium, we wait at least 40 min after applying each strain.
As the applied strain increases from 0 to 18%, the ridge height
decreases by a factor of three and the opening angle increases to
α= 126.3°. This change in the opening angle indicates that the
surface stress has increased to 44 mNm−1, an ~50% increase from
the value at ϵ1 = 0.

It is important to note that the strain at the contact line is a
combination of the macroscopically applied strain, ϵ1, and the
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Fig. 2 Macroscopic contact angle and microscopic wetting profiles. a Schematic of the strain-dependent wetting experiments, using a biaxial stretcher as
described in ref. 50. b Detail of the contact line geometry at intermediate scales. c Detail of the contact line at microscopic scales, much less than ϒ/E. At
this scale, the geometry of the contact line is given by a vector balance of the surface stresses as shown. d, eMacroscopic wetting profiles of large glycerol
droplets sitting on unstretched and stretched (ϵ1 = 0.09) silicone gels. f Superimposed boundaries for the drops on the stretched (blue) and unstretched
(red) substrates show no difference in the macroscopic contact line geometry (scale bar: 400 μm). g Microscopic wetting profiles for a single droplet on
unstretched (red), 9% stretched (blue), and 18% stretched (pink) silicone gel substrates, respectively (scale bar: 20 μm). h Local strain near the contact
point, ϵ, plotted against the applied strain, ϵ1. Dashed line has a slope of 1. i The opening angle of the wetting ridge, α, increases with the local strain, ϵ. In h,
i, the error bars are SD of the population
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Fig. 3 Strain dependence of solid surface stress, ϒ(ϵ). The points indicate
the average surface stress and average local strain for droplets on the same
substrate. The error bars are the SD of the population. The dashed line is a
linear fit, providing the surface modulus, Λ= 126± 6mNm−1 and zero-
strain surface stress, ϒ0= 19± 3mNm−1
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localized deformation that produces the wetting ridge. To
meaningfully interpret the change in surface stress with applied
strain, we measured the strain at the contact line, ϵ, as a function
of the applied strain, ϵ1 (as described in the Methods section).
Even when the applied strain is zero (ϵ1 = 0), the substrate is
stretched in the wetting ridge with a local value of ϵ= 8% at the
contact line. With increasing stretch, the wetting ridge flattens out
and ϵ converges toward ϵ1, as shown in Fig. 2h.

Armed with the ability to extract local measures of both the
surface stress and surface strain, we measured the wetting ridge
profiles of 35 droplets having radii from 12 to 220 μm at seven
different externally applied strains from 0 to 23% (Supplementary
Fig. 4). As expected, the capillary-dominated structure near the
contact line was identical for all droplets under the same strain
conditions, even though the far-field profiles were elasticity
dominated and depended on the droplet size. We plot the
measured opening angle, α, vs. strain, ϵ, for all experiments in
Fig. 2i. As shown in Supplementary Fig. 5, the size of the
capillary-dominated domain increases with applied strain,
mirroring our observations from the adhesion experiment in
Fig. 1g.

Strain-dependent surface stress. Applying the force balance of
Fig. 2c to the data in Fig. 2i, we calculate the strain dependence of
the solid surface stress, shown in Fig. 3. Over the range of mea-
sured strains, up to ~25%, we find that the surface stress increases
linearly with strain. Fitting these data to the form ϒ=ϒ0 +Λϵ,
we find ϒ0= 19± 3 mNm−1 and Λ= 126±6 mNm−1. The fitted
value of the surface stress at zero strain, ϒ0, is quite close to the
surface tension of the gel’s liquid silicone precursor, which we
measured to be 21 mNm−1 (see Methods section).

The surface modulus, Λ, is a material property of the solid
silicone gel surface. Surface moduli are predicted to have an
important role in the nanoscale mechanics of metallic surfaces,
but have never been measured directly10, 11, 27. As with bulk
elasticity, elastic surfaces can be characterized by two surface
moduli that represent the response of the surface to shear or
biaxial stretch: the surface equivalents of shear and bulk moduli20.
In our experiments, the strain is nearly isotropic, so Λ is solely
dependent on the latter.

Discussion
The strain dependence of the surface stress is remarkably strong,
with Λ % ϒ0. Consequently, the surface stress increases 2.5× with
25% strain. This dramatic effect emphasizes just how important
strain-dependent solid surface stress is to a complete description
of the mechanics of compliant materials. It may also resolve a
persistent mystery in the reported values of the surface stress of
soft silicones, which have thus far varied from 19 to 70 mNm−1,
as each measurement has involved a different specific experi-
mental geometry and thus different strain states (see Table 1).

Decades of theoretical work have been based on the expecta-
tion that strain-dependent solid surface stress is a universal fea-
ture of all solids, but direct measurements in conventional stiff
materials have proven extremely challenging. Soft solids, with
their high compliance and ability to sustain large-strain elastic
deformation, provide unique experimental model systems that
make accessible direct measurements of this fundamental mate-
rial property. Moving forward, we anticipate a rich interplay
between experiments and theory for a broad range of solid
materials. For example, experimental studies probing elastoca-
pillary mechanics in micro-structured polymer gels and elasto-
mers28–32 could inform our understanding and design of
nanostructured metals and semiconductors11, 12, 33. To make
meaningful comparisons between these very different systems, the
relative size of the elastocapillary length and the length scale of
deformation should be consistent.

Numerous applications already rely on compliant solids, from
adhesives to soft robotics to medical implants34–38. Our results
have immediate consequences for elastocapillary phenomena in
these materials32, 39–46. Thanks to the strong strain dependence of
the surface stress, the elastocapillary length scale can be tuned and
significantly extended through careful control of the stress state.
This suggests an exciting new design space where adhesion and
wetting properties of a soft material could be modulated with
mechanical stimuli. To fully realize these ideas, a fundamental
investigation of the structure–property relationships that deter-
mine the surface modulus in polymeric materials is required. We
expect that much can be learned from comparison to complex
fluid-fluid interfaces, where a sophisticated understanding is
emerging of the structure-property relationships that underlie
surface rheology47, 48.

Methods
Silicone gel preparation and mechanical characterization. For the adhesion
experiments, we prepare the silicone gel substrates by mixing liquid (1 Pa s−1)
divinyl-terminated polydimethylsiloxane (PDMS) (Gelest, DMS-V31) with a che-
mical cross-linker (Gelest, HMS-301) and catalyst (Gelest, SIP6831.2), as described
in detail in earlier work21, 32. We degas the silicone mixture in vacuum, form it into
the desired experimental geometry, and cure the polymer at 68 °C for 12–14 h
before the experiments. The resulting solid gel has a shear modulus of G′= 1.9 kPa,
as measured by bulk rheology, and the Poisson ratio of the gel’s elastic network is ν
= 0.48, measured using a compression test in the rheometer as described in ref. 49.
We also performed bulk tensile testing in order to measure the Young modulus as a
function of strain. We find that the gel is linear elastic to ~10% true strain, then
moderately strain stiffening thereafter (Supplementary Fig. 1). We observe no
plastic deformation or flow in either shear rheology or in cyclic bulk tensile testing.
For the wetting experiments, we prepare the silicone gel substrates from com-
mercially available Dow Corning CY52-276. We mix the solutions of part A and
part B with 1:1 volume ratio, and degas the mixture in vacuum. After waiting
45–50 min to let the mixture become slightly more viscous, we spin coat the
mixture on top of a stiff silicone membrane (SMI/silicone sheet, Young’s Modulus
around 1MPa) at 800 r.p.m. for 1 min. As a result, a layer of uncured silicone with
a thickness of ~ 80 μm is coated on top of the stiff membrane. Then we cure
overnight at room temperature to produce a soft silicone gel. After curing, the
Young modulus is E= 3.0 kPa and the Poisson ratio is 0.496. For detailed rheo-
logical data on this material, see ref. 49.

Adhesion experiments. In the adhesion experiments, we directly image the
deformation of the silicone gel during contact and subsequent quasi-static
separation using an inverted optical microscope. We illuminate the sample with a
low-Numerical Aperture (N.A.) condenser and image using a ×40 (N.A.= 0.60) air
objective. To prepare the gel substrates in an appropriate geometry for visualiza-
tion, we deposit a ~300-μm-thick layer of PDMS along the millimeter-wide edge of
a standard microscope slide, as in the zero-force brightfield experiments of ref. 21.
The silicone surface is flat parallel to the long edge of the microscope slide and very
slightly curved (radius of curvature ~700 μm) in the orthogonal direction. This
creates a very-nearly flat solid silicone surface that presents a flat edge clearly
visible from the side. For the rigid, spherical indenters, we use untreated silica
spheres (Polysciences, 07668) attached to the tapered ends of initially 1-mm-wide
glass rods pulled to roughly 10 μm in diameter. We use two-part 5-min epoxy
(Elmer’s) to attach the spheres to the rods, waiting 6–10 min after mixing before
applying the glue to the spheres. This ensures that the glue does not flow over the
sphere and change its surface properties. By mounting the glass rods on a three-

Table 1 Measured values of surface stress of similar silicone
gels published in the literature

Silicone Young’s
Modulus (kPa)

Measured
ϒ (mNm−1)

Reference

Sylgard 184 770 19 52

Gelest 5.6 20 21

Sylgard 184 2400 26 53

Dow Corning CY52-276A/B 3 30 16

Sylgard 184 18 30–70 28

Sylgard 184 1000 40–50 29

Dow Corning CY52-276A/B 3 42–59 23
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axis micromanipulator stage (Narshige MMO-023), we are able to control manually
the position of the individual spheres with sub-micrometer precision. Although
high-speed imaging indicates that the initial contact deformation is complete in
about a second, we allow the initial contact to equilibrate for ~10min after first
touch. We then quasi-statically move the spheres away from the surfaces (D< 0) by
slowly moving the micromanipulator by 2 μm every 20 s, taking an image of the
sphere adhered to the deformed substrate just before each step. We confirmed that
these are stable configurations by extending the time between steps to 60 s, as well as
by leaving a sphere and substrate in an adhered but highly deformed configuration
for up to an hour, and observed no difference in the substrate deformation profile.
We continue to increase the separation between sphere and silicone gel substrate
until the adhesion becomes unstable. Given the small size of the particles, we would
expect gravity to be negligible, but as the images are taken from the side, gravity is
always normal to the plane of the images and hence has no role in the substrate
deformation. We process each brightfield image from the adhesion experiments to
locate the surface with precision of about 100 nm over a 427-μm field of view using
the method and software developed in ref. 21 and described in detail therein. We
measure the contact point between the adhered spheres and the PDMS surface, as
well as the curvature of the surface near contact by fitting the measured profiles,
with a shape that is the intersection of two surfaces of constant total curvature that
meet at the contact line. We use the same algorithm and software developed for and
described in detail in ref. 21, with the exception that we fix the contact angle to zero
based on previous measurements21. From these fits, we measure the domain of
constant curvature as the path length over which the constant curvature fit describes
the data well, defined as the region over which the fit residuals remain small.

Predictions of linear elastic theory. The theoretical surface profiles for the
adhesion of a sphere to a linear-elastic half space (with no surface stress) are
calculated using the theory of Maugis18. For each imaged profile, we measure a and
d, and combine this with the known value of R to generate theoretical curves from
Eq. (5) of ref. 18 without the need for any fitting parameters.

Biaxial stretcher. It is based of the design of ref. 50 (Supplementary Fig. 2). It
consists of two coaxial cylinders that are sealed together at the bottom. The
membrane coated with soft silicone gel is placed flat on the top of the cylinders,
and forms an upper seal for the air in the cavity between the two cylinders. This
trapped air is then connected to an external syringe pump, with which we can
control the cavity air pressure. Reducing this air pressure sucks the membrane into
the cavity, creating a tension in the membrane and biaxially stretching the part over
the inner cylinder. With this approach, we can achieve a maximum strain of ~25%.

Macroscopic contact angle measurements. The macroscopic contact angles of
glycerol droplets are measured by imaging back-lit droplets on soft substrates from
the side with a CMOS camera (DCC3240C, Thorlabs). We observed that for all
substrates both advancing and receding droplets always equilibrated to the same
contact angle, so we find no contact angle hysteresis (Supplementary Fig. 3).

Confocal imaging of the wetting profile. We imaged the microscopic profile of
the soft substrates under the contact line of glycerol droplets by tracking the
position of small fluorescent nanobeads attached to the soft silicone substrate with
a confocal microscope. This used the same procedure as that in refs. 16, 26, with the
only difference being that we used 48-nm-diameter yellow/green fluorescent beads
(Life Technologies, F-8795). The total areal coverage of beads is very small: we
estimate it as being 0.4% of the surface area. Thus, we do not expect the presence of
beads to significantly affect the surface properties of the silicone.

Local strain measurements. In order to measure the local strain near the contact
point, we measure the local in-plane and out-of-plane displacements of the sub-
strate, (ux, uz), near the contact line by tracking the displacements of individual
fluorescent beads upon removing a glycerol droplet (e.g., see ref. 26 for details). An
example is shown in Supplementary Fig. 6.

We then convert these displacements into the extra strain due to the presence of
the wetting ridge, Δϵ, using the relation:

Δϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ∂ux
∂x

" #2

þ ∂uz
∂x

" #2
s

& 1 ð2Þ

The local strain at the wetting ridge is then ϵ= ϵ1 +Δϵ.

Measurement of liquid–air surface tension. The surface tension of glycerol
droplets on silicone gel substrates was measured by analyzing the shape of large
sessile droplets on flat gel surfaces. Droplets, with spread diameters of ~10 mm,
were placed on a substrate and allowed to equilibrate for at least an hour. The
droplets were then imaged from the side, and we used a bespoke Matlab program
to extract their shape. Finally, we obtained surface tension values by fitting these
measured shapes with theoretical profiles generated from the Bashforth–Adams
equation, following ref. 51. The surface tension of uncured silicone was measured
using the pendant droplet method. We hung the silicone-liquid droplet from the

end of a blunt-tipped needle, and imaged it from the side. Again, we extracted the
shape of the droplet using a Matlab program and obtained the surface tension by
fitting this shape with the Bashforth–Adams equation51.

Data availability. The data that support the findings of this study are available
from the authors on request.
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