
REVIEW OF SCIENTIFIC INSTRUMENTS 87, 066103 (2016)

Note: An iterative algorithm to improve colloidal particle locating

K. E. Jensen1,2,a) and N. Nakamura3
1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Mechanical Engineering and Materials Science, Yale University,
New Haven, Connecticut 06511, USA
3Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

(Received 18 August 2015; accepted 17 May 2016; published online 3 June 2016)

Confocal microscopy of colloids combined with digital image processing has become a powerful tool
in soft matter physics and materials science. Together, these techniques enable locating and tracking
of more than half a million individual colloidal particles at once. However, despite improvements
in locating algorithms that improve position accuracy, it remains challenging to locate all particles
in a densely packed, three dimensional colloid without erroneously identifying the same particle
more than once. We present a simple iterative algorithm that mitigates both the “missed particle”
and “double counting” problems while simultaneously reducing sensitivity to the specific choice
of input parameters. It is also useful for analyzing images with spatially varying brightness in
which a single set of input parameters is not appropriate for all particles. The algorithm is easy
to implement and compatible with existing particle locating software. Published by AIP Publish-
ing. [http://dx.doi.org/10.1063/1.4952992]

Colloids are materials comprised of nanometer- to
micrometer-scale solid particles suspended in a fluid.
Colloidal particles can easily be made to assemble into a va-
riety of structures and phases, including gels, crystals, and
glasses,1–3 which can then be manipulated locally or as
macroscopic materials. Three dimensional confocal micros-
copy of colloids combined with fast computers and precise
image processing makes it possible to track individual parti-
cle locations over time in a bulk colloid.4,5 These techniques
enable precise measurement of the structure and dynamics
of materials over the entire range of length scales from the
constituent particles up to the bulk. They have been used for
investigations into colloid structure formation,6–10 gel struc-
ture and dynamics,11–14 dynamical heterogeneities and local
deformation mechanisms in glasses,4,15–17 aging of glasses,18

and defects and elasticity in crystals.10,19–22

However, the information to be gained from these exper-
iments is only as accurate as the particle locations them-
selves, since they are the foundation upon which all further
analyses are based. For this reason, it is essential that the
particles be located as precisely, accurately, and completely
as possible. There exist several general approaches to ob-
ject detection in images,23,24 but these methods are usually
not accurate enough for colloidal particle location.25 Stan-
dard algorithms do exist for the specific problem of pre-
cisely locating spherical objects in 3D images, and which
address the particular problem of finding particles in colloidal
suspensions.26 Several recent studies have focused on algo-
rithms to improve the accuracy and precision of particle
locating.27–30 However, significant challenges remain, partic-
ularly in analyzing 3D images of densely packed particles
or images with spatially varying brightness. While individual
particles may be located very accurately, it is very common

a)kjensen@post.harvard.edu

for some particles either to be missed entirely or identi-
fied more than once (“double-counted”). A user can avoid
double-counted particles either by enforcing a strict min-
imum separation between particle locations or by adjust-
ing input parameters to lower the sensitivity of the locating
software, but at the cost of missing more particles. On the
other hand, increasing the software sensitivity also increases
the number of particles found multiple times; although set-
ting a separation threshold works fairly well to limit this
double-counting, it introduces an additional parameter that
may strongly a↵ect final results and there is still no guarantee
that all particles will be found. The result is a trade-o↵ be-
tween these two types of errors that is very sensitive to the
user’s precise choice of input parameters. Attempts to choose
input parameters that mitigate both problems simultaneously
inevitably produce some of each type of error.

To solve this problem, we developed an iterative parti-
cle locating algorithm that is able to find all of the particles
in a 3D image of a colloid with few or no double-counted
particles. We first run standard particle locating software on
the original image data, using input parameters that deliber-
ately err on the side of missing particles in order to avoid
double-counted particles. Next, we erase from the original
image those particles that have already been found. This cre-
ates a new “raw” residual image that is empty except for
those particles that have not yet been found. We then apply
the particle locating software to the residual raw image and
iterate this procedure until all particles have been found.

The steps of the iterative algorithm are described in
detail below, illustrated for an example image stack in
Figure 1. For a typical 3D image containing 50 000 particles
of equal brightness, we locate about 95% of the particles
on the initial pass through the data, and the iterative locat-
ing is complete after four to six iterations. At the end, we
estimate that <0.2% of the particles are double-counted, and
these isolated pairs can easily be identified and consolidated.

0034-6748/2016/87(6)/066103/3/$30.00 87, 066103-1 Published by AIP Publishing.
 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP: 195.176.96.252 On: Mon, 13 Jun

2016 15:00:14

http://dx.doi.org/10.1063/1.4952992
http://dx.doi.org/10.1063/1.4952992
http://dx.doi.org/10.1063/1.4952992
http://dx.doi.org/10.1063/1.4952992
http://dx.doi.org/10.1063/1.4952992
http://dx.doi.org/10.1063/1.4952992
http://dx.doi.org/10.1063/1.4952992
http://dx.doi.org/10.1063/1.4952992
http://dx.doi.org/10.1063/1.4952992
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4952992&domain=pdf&date_stamp=2016-06-03

066103-2 K. E. Jensen and N. Nakamura Rev. Sci. Instrum. 87, 066103 (2016)

For a given sample, algorithm performance will depend on
the resolution and quality of the original image data; for
example, images with spatially varying brightness, such as
the example shown in Figure 1, often require more iterations
than evenly illuminated samples.

The software we use to implement iterative particle
locating is included as MATLAB code in the supplemen-
tary material.31 We also provide three example data sets:
Example 1, a colloidal glass; Example 2, a colloidal crystal;
and Example 3, a dense, disordered colloid with spatially
varying image brightness (used for the example shown in
Figure 1). Each example data set includes a small 3D
confocal image stack, a text file of particle locations, and the
input parameters used to locate the particles. We interface
the iterative algorithm with the publicly available MATLAB

FIG. 1. Iterative particle locating applied to a 3D confocal image of a dense,
disordered colloid with variation in individual particle brightness and uneven
illumination across the sample.31 (a) An x-y cross section through the raw
data. (b) The same cross section through the residual raw data after particles
found in the first locating pass have been deleted. (c) The results of iterative
particle locating. Particles whose centers are within about ±1 particle radius
of this cross section are marked according to the locating iteration in which
they were found: 1st pass, (�); 2nd pass, (4); 3rd pass, (⌃); 4th pass, (⇤); 5th
pass, (O). (d) The results for the same 3D data set of standard non-iterative
particle locating with optimized parameters.

particle locating software of Ref. 29. However, the algorithm
we present is broadly compatible with any approach to parti-
cle locating, and the example code provided should be easily
adaptable to interface with other locating software.

We start with a 3D confocal image of a colloid in which
the particles appear bright against a dark background. An x-y
cross section through such an image is shown in Figure 1(a).
We bandpass filter the raw image and run a first pass of par-
ticle locating using the standard filtering and feature-finding
software of Ref. 29. In choosing input parameters for the
standard software, we deliberately choose parameters that
may miss some particles rather than double-counting any par-
ticle. Any missed particles will be identified in subsequent
iterations.

Next, we generate a 3D residual raw image by delet-
ing from the original image those particles that have already
been found. Spherical particles generally appear as ellipsoids
in 3D images, so we erase each found particle by replacing
the original image data surrounding its coordinates with an
appropriately sized ellipsoid of zero-valued pixels. The x, y,
and z particle dimensions in pixels are the only input parame-
ters required by the iterative locating algorithm beyond stan-
dard particle locating.

The resulting residual raw image contains only those
particles that have not yet been found, as shown for the
example cross section in Figure 1(b). In this case, a num-
ber of particles were missed during the first pass. Particles
that were missed are usually isolated in the residual raw im-
age, as on the left side of the example, making them much
easier to locate on subsequent iterations than when they were
surrounded by other bright objects. In cases where spatially
varying image brightness causes the initial locating pass to
miss entire regions of particles, as in the upper-right corner of
the example, the iterative locating procedure will locate all of
the particles over the course of several iterations.

We then bandpass filter the residual raw image and run
the particle locating software again. We use all the same
input parameters for filtering and locating as in the first pass,
with the added constraint that a bright region must have an
integrated intensity greater than some minimum threshold in
order to be considered a real particle rather than noise. This
is a standard feature of many particle locating software pack-
ages, including the one we use.29 This cuto↵ prevents any
small bright regions in the residual raw image from being
falsely identified as additional particles, such as the edges of
particles that may have been incompletely deleted from the
original raw image. As these regions are significantly smaller
than the real particles, there is no ambiguity in distinguishing
them. Particles cut o↵ by the edges of the image may or may
not pass the integrated intensity threshold. Although they are
real particles, their center coordinates will not be accurate if
they are not fully contained within the image. Fortunately,
it is straightforward to exclude particles close to the image
edges from subsequent analyses.

We continue to delete particles from the images as they
are located and iterate this entire process until no new parti-
cles are found. For a typical image with uniform brightness,
the second iteration finds nearly all of the particles missed
during the first pass, and the locating is usually complete in

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP: 195.176.96.252 On: Mon, 13 Jun
2016 15:00:14

066103-3 K. E. Jensen and N. Nakamura Rev. Sci. Instrum. 87, 066103 (2016)

4-6 iterations. Samples that were unevenly illuminated by the
microscope or that have a large variation in the brightness
of individual particles may require more iterations. These are
also data sets for which a single set of locating parameters
would usually not successfully identify all particles, so the
iterative approach is particularly helpful here. The 3D data
set shown in the figure required 8 iterations to complete the
locating.

Figure 1(c) shows all of the particles located near this
cross section at the end of the iterative locating process. Each
found particle is marked according to the iteration in which
it was located. For comparison, we also show the results
of traditional single-pass particle locating in Figure 1(d). In
this case, we optimized the parameters to locate as many
particles as possible in a single pass with minimal double-
counting, including setting a minimum separation distance
between neighboring particles. However, the locating results
are only marginally more complete than the first pass of the
iterative particle locating, and many particles in this example
were missed entirely.

In summary, we have created and implemented an itera-
tive algorithm to improve the completeness of particle locat-
ing of individual colloidal particles in an image. The algo-
rithm is useful, simple, straightforward to implement, and
easily integrated with existing particle locating software. The
algorithm requires only three new input parameters from the
user: the x, y, and z dimensions in pixels of an individual
particle in the original image. Although we implement it
for locating monodisperse, spherical particles, this algorithm
could easily be extended to colloids comprised of polydis-
perse or non-spherical particles. In the latter case, the orienta-
tion of the already-found particles would also be required to
erase them accurately from the raw images.

This work was supported by NSF through the Harvard
MRSEC (Contract No. DMR-1420570). We thank Daniel
Pennachio for help imaging the colloidal crystal included as
Example 2 in the supplementary material,31 and Peter Schall,
Sanne van Loenen, and Triet Dang for providing the im-
age data for Example 3 in the supplementary material and
the figure.31 We are also grateful to John Irvine and Frans
Spaepen for helpful discussions and to the reviewer for useful
suggestions that improved the manuscript.

1W. C. K. Poon and M. D. Haw, Adv. Colloid Interface Sci. 73, 71 (1997).
2K. E. Davis and W. B. Russel, Adv. Ceram. 21, 573 (1987).
3P. J. Lu and D. A. Weitz, Annu. Rev. Condens. Matter Phys. 4, 217 (2013).
4A. D. Dinsmore, E. R. Weeks, V. Prasad, A. C. Levitt, and D. A. Weitz, Appl.
Opt. 40, 4152 (2001).

5V. Prasad, D. Semwogerere, and E. R. Weeks, J. Phys.: Condens. Matter 19,
113102 (2007).

6A. van Blaaderen, R. Ruel, and P. Wiltzius, Nature 385, 321 (1997).
7U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, Science
292, 258 (2001).

8A. B. Schofield, P. N. Pusey, and P. Radcli↵e, Phys. Rev. E 72, 031407
(2005).

9U. Gasser, J. Phys.: Condens. Matter 21, 203101 (2009).
10K. E. Jensen, D. Pennachio, D. Recht, D. A. Weitz, and F. Spaepen, Soft

Matter 9, 320 (2013).
11A. D. Dinsmore and D. A. Weitz, J. Phys.: Condens. Matter 14, 7581 (2002).
12P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A.

Weitz, Nature 453, 499 (2008).
13J. Sprakel, S. B. Lindström, T. E. Kodger, and D. A. Weitz, Phys. Rev. Lett.

106, 248303 (2011).
14T. E. Kodger, “Mechanical failure in colloidal gels,” Ph.D. thesis, Harvard

University, 2015.
15R. Besseling, E. R. Weeks, A. B. Schofield, and W. C. K. Poon, Phys. Rev.

Lett. 99, 028301 (2007).
16P. Schall, I. Cohen, D. A. Weitz, and F. Spaepen, Nature 440, 319 (2006).
17K. E. Jensen, D. A. Weitz, and F. Spaepen, Phys. Rev. E 90, 042305

(2014).
18G. C. Cianci, R. E. Courtland, and E. R. Weeks, Solid State Commun. 139,

599 (2006).
19P. Schall, I. Cohen, D. A. Weitz, and F. Spaepen, Science 305, 1944 (2004).
20P. S. Schall, D. A. Weitz, and F. Spaepen, Science 318, 1895 (2007).
21M. C. M. Persson Gulda, “Defects in hard-sphere colloidal crystals,” Ph.D.

thesis, Harvard University, 2013.
22E. R. Russell, F. Spaepen, and D. A. Weitz, Phys. Rev. E 91, 032310 (2015).
23J. A. Ratches, Opt. Eng. 50, 072001 (2011).
24R. A. Kerekes and B. V. K. V. Kumar, Opt. Eng. 47, 067202 (2008).
25J. M. Irvine, in Sponsored by the American Society of Photogramme-

try and Remote Sensing (ASPRS), GeoTech 2010, Fairfax, VA, 27-28
September 2010.

26J. C. Crocker and D. G. Grier, J. Colloid Interface Sci. 179, 298
(1996), particle locating software based on this reference is available at
http://www.physics.emory.edu/faculty/weeks/idl/.

27P. J. Lu, P. A. Sims, H. Oki, J. B. Macarthur, and D. A. Weitz, Opt. Express
15, 8702 (2007).

28M. C. Jenkins and S. U. Egelhaaf, Adv. Colloid Interface Sci. 136, 65 (2008).
29Y. Gao and M. L. Kilfoil, Opt. Express 17, 4685 (2009), software

available under MATLAB 3D feature finding algorithms at
http://people.umass.edu/kilfoil/downloads.html.

30P. J. Lu, M. Shutman, E. Sloutskin, and A. V. Butenko, Opt. Express 21,
30755 (2013).

31See supplementary material at http://dx.doi.org/10.1063/1.4952992 for an
example MATLAB implementation of the iterative algorithm as well as
three small example data sets, each with a text file of particle positions
and a .m file of the input parameters used to locate the particles.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP: 195.176.96.252 On: Mon, 13 Jun
2016 15:00:14

