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In the classic theory of solid adhesion, surface energy drives
deformation to increase contact area whereas bulk elasticity
opposes it. Recently, solid surface stress has been shown also to
play an important role in opposing deformation of soft materials.
This suggests that the contact line in soft adhesion should mimic
that of a liquid droplet, with a contact angle determined by surface
tensions. Consistent with this hypothesis, we observe a contact
angle of a soft silicone substrate on rigid silica spheres that
depends on the surface functionalization but not the sphere size.
However, to satisfy this wetting condition without a divergent
elastic stress, the gel phase separates from its solvent near the
contact line. This creates a four-phase contact zone with two
additional contact lines hidden below the surface of the substrate.
Whereas the geometries of these contact lines are independent of
the size of the sphere, the volume of the phase-separated region is
not, but rather depends on the indentation volume. These results
indicate that theories of adhesion of soft gels need to account for
both the compressibility of the gel network and a nonzero surface
stress between the gel and its solvent.
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Solid surfaces stick together to minimize their total surface en-
ergy. However, if the surfaces are not flat, they must conform to

one another to make adhesive contact. Whether or not this contact
can be made, and how effectively it can be made, are crucial
questions in the study and development of solid adhesive materials
(1, 2). These questions have wide-ranging technological conse-
quence. With applications ranging from construction to medicine,
and large-scale manufacturing to everyday sticky stuff, adhesive
materials are ubiquitous in daily life. However, much remains
unknown about the mechanics of solid adhesion, especially when
the solids are very compliant (3–5). This limits our understanding
and development of anything that relies on the mechanics of soft
contact, including pressure-sensitive adhesives (6, 7), rubber fric-
tion (8), materials for soft robotics (9–12), and the mechanical
characterization of soft materials, including living cells (13–17).
Adhesion is favorable whenever the adhesion energy, W = γ1 +

γ2 − γ12, is positive, where γ1 and γ2 are the surface energies of the
free surfaces and γ12 is the interfacial energy in contact. When
W > 0, the solids are driven to deform spontaneously to increase
their area of contact, but at the cost of incurring elastic strain. The
foundational and widely applied Johnson–Kendall–Roberts (JKR)
theory of contact mechanics (18, 19) was the first to describe this
competition between adhesion and elasticity. However, it was re-
cently shown that the JKR theory does not accurately describe
adhesive contact with soft materials because it does not account
for an additional penalty against deformation due to solid surface
stress, ! (4). Unlike a fluid, the surface stress of a solid is not
always equal to its surface energy, γ. For solids, γ is the work re-
quired to create additional surface area by cleaving, whereas ! is
the work needed to create additional surface area by stretching
(20). In general, surface stresses overwhelm elastic response when
the characteristic length scale of deformation is less than an
elastocapillary length, L, given by the ratio of the surface stress to
Young’s modulus, L=!=E (21–25). This has an important im-
plication for soft adhesion (4, 26–30): the geometry of the contact

line between a rigid indenter and a soft substrate should be de-
termined by a balance of surface stresses and surface energies, just
as the Young–Dupré relation sets the contact angle of a fluid on a
rigid solid (31). However, the structure of the contact zone in soft
adhesion has not been examined experimentally.
In this article, we directly image the contact zone of rigid

spheres adhered to compliant gels. Consistent with the domi-
nance of surface stresses over bulk elastic stresses, we find that
the surface of the soft substrate meets each sphere with a con-
stant contact angle that depends on the sphere’s surface func-
tionalization but not its size. To satisfy this wetting condition
while avoiding a divergent elastic stress, the gel and its solvent
phase separate near the contact line. The resulting four-phase
contact zone includes two additional contact lines hidden below
the liquid surface. The geometries of all three contact lines are
independent of the size of the sphere and depend on the relevant
surface energies and surface stresses. Surprisingly, these results
demonstrate a finite surface stress between the gel and its sol-
vent. The volume of the phase-separated contact zone depends
on the indentation volume and the compressibility of the gel’s
elastic network.

Structure of the Adhesive Contact Line
We study the contact between rigid glass spheres and compliant
silicone gels. Glass spheres ranging in radius from 7 to 32 μm
(Polysciences, 07668) are used as received or surface function-
alized with 1H,1H,2H,2H-Perfluorooctyl-trichlorosilane (Sigma-
Aldrich, 448931), as described in the Supporting Information. We
prepare silicone gels by mixing liquid (1 Pa · s) divinyl-termi-
nated polydimethylsiloxane (PDMS) (Gelest, DMS-V31) with a
chemical cross-linker (Gelest, HMS-301) and catalyst (Gelest,
SIP6831.2). The silicone mixture is degassed in vacuum, put into
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the appropriate experimental geometry, and cured at 68° C for
12–14 h. The resulting gel is an elastic network of cross-linked
polymers swollen with free liquid of the same un- or partially-
cross-linked polymer. The fraction of liquid PDMS in these gels
is 62% by weight, measured by solvent extraction. The gel has a
shear modulus of G′= 1.9 kPa, measured by bulk rheology. The
Poisson ratio of the gel’s elastic network is ν= 0.48, measured
using a compression test in the rheometer as described in ref. 32.
As this is an isotropic, elastic material, this gives a Young
modulus E= 5.6 kPa and a bulk modulus K = 47 kPa. All rheol-
ogy data are included in the Supporting Information.
We directly image the geometry of the contact between the gel

and sphere using optical microscopy. To prepare the gel sub-
strates, we deposit an ∼ 300-μm-thick layer of PDMS along the
millimeter-wide edge of a standard microscope slide. The silicone
surface is flat parallel to the edge of the slide and slightly curved in
the orthogonal direction with a radius of curvature ∼ 700 μm. We
distribute silica spheres sparsely on the surface of the gel and
image only those spheres that adhere at the thickest part of the
gel. Using an inverted optical microscope, we illuminate the
sample with a low-N.A. condenser and image using a 40× (N.A.
0.60) air objective. Example images for fluorocarbon-functional-
ized and plain silica spheres having radii of about 18 μm are shown
in Fig. 1 A and B, respectively. All of the images analyzed for this
work are included in the Supporting Information. In all cases, the
rigid particles spontaneously indent into the gel as they adhere.
Plain silica spheres indent more deeply than fluorocarbon-func-
tionalized spheres of the same size.
To test whether surface stresses dominate over elasticity at the

contact line, we measure the contact angle between the free
surface of the gel and the sphere. Starting with the raw image data,
we map the position of the dark edge in the images with 100-nm
resolution using edge detection in MATLAB, as described in the
Supporting Information. Example profiles for fluorocarbon-func-
tionalized (blue points) and plain silica (red points) spheres are
shown in Fig. 1C. We fit the central region of the profile with a
circle to determine the position and radius of the sphere, indicated
by the gray lines in Fig. 1C.
The approach to contact is qualitatively different for the two

types of spheres: the substrate meets the plain spheres at a much
shallower angle than the fluorocarbon-functionalized ones. We
fit the substrate surface profile near the contact line to a surface
of constant total curvature, which is the shape expected when
surface stresses completely overwhelm elastic effects (31). The
fitting procedure is described in the Supporting Information. Fit
results for the profiles shown in Fig. 1C are plotted in Fig. 1D,
zoomed in close to the contact line on one side. Note that we do
not fit to the profile data within 1 μm of the contact line, because
diffraction tends to round off sharp corners. The resulting con-
tact angles and curvatures are plotted as a function of sphere size
for both fluorocarbon-functionalized and plain spheres ranging
in radius from 12 to 27 μm in Fig. 1 E and F.
The contact angle of the substrate on the sphere is indepen-

dent of the sphere size, but depends on the sphere’s surface
functionalization. The gel establishes a contact angle of θ= 55± 5°
with the fluorocarbon-functionalized spheres, and θ= 7± 8° with
the plain spheres. We also see no size dependence of the cur-
vature of the gel near the contact line, and little difference with
surface functionalization: κplain =−0.14± 0.03 μm−1 and κfc =−0.17±
0.02 μm−1. Assuming that the surface tension of the solid is close to
that of the liquid, 20 mN/m, these constant curvature values are
comparable to the inverse of the elastocapillary length of the
substrate E=!= 0.28 μm−1.
For comparison, we measure the contact angle between the

spheres and uncured PDMS liquid. See the Supporting Infor-
mation for a description of this measurement, raw images, and a
histogram of measured contact angles. In this case, the contact
angles should be set by the surface energies through the classic

Young–Dupré relation. We find that the plain silica spheres are
completely engulfed by the silicone liquid, corresponding to a
contact angle θ= 0°. On the fluorocarbon-functionalized spheres,
the uncured liquid makes a contact angle θ= 54± 4°. These
contact angles are also very close to what we measure for the
silicone liquid on flat glass: θ= 0° on plain glass, and θ= 57° on
fluorocarbon-functionalized flat glass.
The contact angles made by the silicone gel on the spheres are

the same as the contact angles made by the silicone liquid. This
suggests that the Young–Dupré relation governs the contact line
of a soft adhesive. However, achieving the contact angle pre-
scribed by Young–Dupré presents a serious difficulty for the gel’s
elastic network, especially during contact with surfaces that
demand total wetting. As the contact angle of the gel ap-
proaches zero, the tensile strain on the elastic network diverges.
How does the gel satisfy the wetting condition without creating
an elastic singularity?

A B
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Fig. 1. Contact angle measurements. (A and B) Side views of (A) an 18.2-μm-
radius fluorocarbon-functionalized silica sphere and (B) a 17.7-μm-radius
plain silica sphere, each adhered to an E= 5.6 kPa silicone gel. (Scale bars,
10 μm.) (C) Mapped profiles of the spheres in A and B overlaid, with fit circles
drawn to outline each sphere’s position. The undeformed plane far from the
adhered particles defines z= 0. (D) Close-up of the profiles in C superimposed
on the raw data, focusing on the approach to contact. The constant curva-
ture fits are overlaid as orange curves, as well as straight dashed lines in-
dicating the measured contact angles. (E and F) Measured contact angle, θ,
and measured curvature, −κ, respectively, versus sphere radius for both the
fluorocarbon-functionalized (blue triangles) and plain silica (red circles)
spheres. Dashed lines indicate the mean values. Histograms of the mea-
surements are shown at right, with mean and SD indicated.
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Deformation of the Elastic Network
To quantify the deformation of the gel’s elastic network, we
embed fluorescent tracers in the elastic network at the surface of
the gel and image them using confocal microscopy. For this ex-
periment, we prepare flat, ∼ 120-μm-thick, silicone substrates on
glass coverslips by spin-coating. After curing, we adsorb 48-nm-
diameter fluorescent spheres (Life Technologies, F-8795) from an
aqueous suspension onto the PDMS. This procedure is identical to
that described in ref. 32 except that we do not chemically modify the
silicone surface. Then, following the procedure of ref. 4, we sprinkle
silica spheres onto the substrates and map the surface of the de-
formed elastic network by locating the fluorescent makers in 3D
from confocal microscope images (33). Examples of azimuthally
collapsed deformation profiles for each type of sphere are shown in
Fig. 2A. Confocal profiles for 146 spheres ranging from 7 to 32 μm
in radius are included in the Supporting Information. We find that
the dependence of indentation depth on particle size is consistent
with our earlier study of the transition from elastic-dominated to
capillary-dominated adhesion (4); these data and fits to theory are
also included in the Supporting Information, Fig. S13.
As expected, the elastic network rises gradually toward contact

from the far field and conforms to the surface of the spheres

underneath the particles. However, the surface of elastic network
in the contact zone (Fig. 2A) looks nothing like the free surface
of the substrate (Fig. 1). Specifically, the elastic network does
not rise smoothly to contact the sphere with the expected con-
tact angle and curvature. Instead, it has a kink of angle ϕ a few
micrometers from the sphere. Eventually the elastic network
comes into contact with the sphere with an angle ψ well below
the expected contact point. A series of control experiments,
described in the Supporting Information, ruled out the possibility
that the discrepancies between the structure of the contact zone
in the bright-field and confocal experiments could be due to
imaging artifacts. Just like the contact angle of the free surface θ
(Fig. 1E), the angles ϕ and ψ are independent of sphere radius,
as shown in Fig. 2 B and C.

Adhesion-Induced Phase Separation
Comparison of the bright-field images in Fig. 1 A and B with the
confocal images in Fig. 2A suggests that liquid PDMS fills the

A

B

C

Fig. 2. Structure of the gel’s elastic network near contact. (A) Confocal profiles
of the surface of the silicone elastic network adhered to an 18.3-μm-radius plain
silica sphere (red) and an 18.5-μm-radius fluorocarbon-functionalized sphere
(blue). (B) Contact angle, ϕ, made by the elastic network as it abruptly changes
direction during approach to contact. (C) Contact angle, ψ , made by the elastic
network as it contacts the sphere. Both ϕ and ψ are plotted versus sphere radius
for both the fluorocarbon-functionalized (blue triangles) and plain silica (red
circles) spheres. Dashed lines indicate the mean contact angle. Histograms of
the measured contact angles are shown at right, with mean and SD indicated.

A

B

Fig. 3. Structure and size of the four-phase contact zone. (A) Schematic
of the four-phase contact zone. (Inset) Schematic of the surface tension
balance at each of the contact lines A, B, and C. (B) Plot of the volume
of phase-separated liquid, Vliquid = ðVindent −VridgeÞ, vs. indented volume,
Vindent, measured by integrating the confocal profiles. The data for plain
spheres in air are plotted as red circles, for fluorocarbon-functionalized
spheres in air as blue triangles, and for plain spheres under glycerol as
orange circles. A dashed line of slope 4/3 is shown as a guide to the eye.
(Inset) The same data plotted vs. sphere radius, with a dashed line of
slope 3.
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space between the elastic network and the free surface, as shown
schematically in Fig. 3A. In this way, the fluid can satisfy the
Young–Dupré wetting condition while the elastic network avoids
an elastic singularity. This adhesion-induced phase separation
makes the zone of adhesive contact between a soft gel and a rigid
object more complex than in adhesion to stiffer single-phase
solids. Instead of a single three-phase contact line, phase sepa-
ration creates a four-phase contact zone in which air, silica, sil-
icone liquid, and silicone gel meet, as shown in Fig. 3A. In
addition to the standard contact line at A, the confocal experi-
ments reveal two additional contact lines at B and C. The exis-
tence of particle-size-independent contact angles ϕ and ψ at
these contact lines strongly indicates that their geometry is
governed by surface stresses and/or surface energies, as indicated
in Fig. 3A, Inset. The contact line at A is a conventional rigid
solid–liquid–vapor contact line which satisfies the Young–Dupré
relation, as discussed above. The contact line at B follows a
Neumann triangle construction at this soft solid–liquid–vapor
contact line, as in refs. 34, 35. Finally, we expect the contact line
at C to be described by a modified Young–Dupré relation for a
soft solid in contact with a rigid solid, as in ref. 4.
The structures of the contact lines at B and C therefore pro-

vide information about the relevant surface stresses and surface
energies (20). For an ideal gel (36), the liquid phase dominates
and the surface stress and surface energy of the gel are identical
and equal to the surface tension of the solvent (36, 37). However,
recent measurements of the surface stress of gels have some-
times differed significantly from the surface tension of their
fluid phases (4, 34, 38, 39). If our silicone gel were ideal, we
would expect the surface of the gel to be equivalent to the
surface of its solvent, such that !gl = 0. In that case, there would
be no constraint on the contact angles, ψ or ϕ. However, the
existence of well-defined, size-independent values of ψ and ϕ
implies that !gl > 0. Furthermore, we observe that ψ > 90∘, im-
plying that γpg > γpl. This means that the particle has a prefer-
ence for making contact with the pure liquid over the gel. This
preference is only slightly changed by fluorocarbon functionali-
zation of the particle surface.
At contact line B, the surface tension of the liquid γlv must

balance the surface stresses of the gel, !gl and !gv, through the
Neumann construction. To fully determine all of the surface
tensions, we also need to measure the difference in angle be-
tween the gel and the liquid free surfaces, α, as indicated in Fig.
3A, Inset. In principle, α should be measurable as a disconti-
nuity in the free surface at B. However, our bright-field images
do not reveal such a discontinuity (Fig. 1 and Supporting In-
formation). This suggests that the angle α is small and cannot be
resolved due to diffraction effects (as seen in Fig. 1D). Small
values of α are expected when !gl and/or ð!gv − γlvÞ are small.
Simplifying the Neumann condition for !gl=γlv � 1, we obtain
α= ð!gl=γlvÞsinϕ � 1. Further, by expanding both the horizontal
and vertical force balances at B for e= ð!gv − γlvÞ=γlv � 1, we find
that 1+ e= cos α− sin α cotϕ, which also results in small values of
α for small «.
Although we cannot measure α directly in these experiments,

we can put a rough upper bound on its magnitude by com-
bining our bright-field and confocal results for the geometry of
the contact zone. These observations allow us to constrain α
between 0° and 10°. This bounds the values of the solid surface
stresses such that 0<!gl K 0.4γlv and γlv <!gv K 1.3γlv. More
precise measurements of the free-surface profile at contact
line B will be required for precise measurement of the solid
surface stresses.
Surface stresses and energies fix the geometries of the corners

of the phase-separated liquid region at A, B, and C, but this is not
sufficient to determine its overall size, Vliquid. Because the liquid

is incompressible but the elastic network is not (40, 41), Vliquid
must equal the change in volume of the elastic network due to the
adhesion of the sphere. We define Vindent as the volume occupied
by the sphere below the plane of the undeformed silicone surface,
and Vridge as the volume of the elastic network displaced above the
undeformed surface, as indicated in Fig. 3A. Thus, we can mea-
sure Vliquid from our confocal profiles as Vindent −Vridge. We com-
pute these volumes by numerical integration of the axisymmetric
confocal profiles.
We plot Vliquid vs. sphere radius in Fig. 3B, Inset. We see that

the dependence of Vliquid on sphere size differs for the different
surface functionalizations, but scales approximately as R3. This
suggests that Vliquid may be related to volume, rather than surface
effects. We find that all of the data collapse if we instead plot
Vliquid versus Vindent, as shown in the main panel of Fig. 3B. The
volume of the phase-separated contact zone scales as a power
law with exponent 4/3 over this range of indentation volumes.
The more the elastic network is compressed by the spontaneous
indentation of the particle, the larger the volume of incom-
pressible liquid that phase-separates from the elastic network.
This collapse is robust not only for the fluorocarbon-function-
alized and plain silica spheres, but also after changing the bal-
ance of surface energies by covering the sphere and substrate
with glycerol. It can even work when the system is out of equi-
librium, as some of the glycerol-covered data points were not
given enough time to equilibrate fully to their new indentation
depth. Dimensionally, the prefactor for this power-law col-
lapse must have dimensions of 1/[length]. Fitting to Vliquid =
ð1=L′ÞV 4=3

indent, we measure L′= 38 μm, which is about 10 times
the elastocapillary length.

Conclusions
We have seen that during adhesion with a rigid object, a com-
pliant gel phase-separates near the contact line to create a four-
phase contact zone with three distinct contact lines. The total
volume of the phase-separated region is set by the extent of in-
dentation and the compressibility of the gel’s elastic network.
The geometries of the contact lines are independent of the size
of the particles and suggest that the gel–vapor–solid surface
stress, !gv, and the liquid–vapor surface tension, γlv, are different,
and that the solid surface stress between the gel and the liquid,
!gl, is nonzero.
These findings qualitatively change our understanding of the

contact zone. This understanding of the geometry of contact
and the balance of forces at work should inform both future
theoretical work and engineering design of soft interfaces.
Future studies will address adhesion-induced phase separation
in different types of gels having varying compressibility of the
elastic network. In many situations, a gel can be considered a
single, homogeneous material. However, our results demonstrate
that under extreme conditions––such as near a contact line––the
nature of a gel as a multiphase material becomes important.
This may have important implications not just for silicone
materials, but also for materials like hydrogels, which have
recently been the subject of significant research efforts (42–
44). Because elastic networks in hydrogels can be much more
compressible than the silicone gel studied here (40, 41), it is
possible that they will be even more susceptible to phase sepa-
ration during contact.
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