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Sti�ening solids with liquid inclusions
Robert W. Style1,2, Rostislav Boltyanskiy1, Benjamin Allen1, Katharine E. Jensen1, Henry P. Foote3,
John S. Wettlaufer1,2,4 and Eric R. Dufresne1*

From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s
inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of
a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide
variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s
theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly
size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the
predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the sti�ness
of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid–liquid interface,
explains our experimental observations. The counterintuitive sti�ening of solids by fluid inclusions is expected whenever
inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the
solid matrix. These results suggest that surface tension can be a simple and e�ective mechanism to cloak the far-field elastic
signature of inclusions.

Composite materials can offer marked performance
improvements over their individual components. Carbon
fibre increases the strength and stiffness of polymer resins

as much as a hundredfold1. Densely packed gas bubbles in a liquid
matrix create a foam, which resists deformation like a solid2. The
foundational theory of solid composites, due to Eshelby, describes
how isolated inclusions in a composite behave in response to
applied stresses3. Eshelby applied this result to predict the stiffness
of dilute solid composites3 and his theory has been extended
to finite concentrations, where neighbouring inclusions couple
through their induced strain fields (for example, refs 4,5). Eshelby’s
theory has been applied widely beyond composites, having
long been used to understand the mechanics of fracture6,7 and
plasticity8,9. More recently, it has been applied to understanding
flow of sheared glasses10 and the interactions of cells with the
extracellular matrix11,12.

Eshelby’s theory describes the matrix and inclusion as bulk
linear-elastic solids, but does not account for the physics of the
interface, which generically includes excess surface free energy and
surface stress13–15. Surface energy is the reversible work per unit
area required to create new interfacial area by cutting. Surface
stress is the reversible work per unit area to create new interfacial
area by stretching. For liquids, surface energy and surface stress
are identical, isotropic and strain-independent. For solids, surface
stress and energy are generally anisotropic and distinct, but can be
isotropic for soft amorphous solids such as gels16,17. Cell membranes
and other thin-walled vessels can exhibit large isotropic surface
stress with negligible surface energy18,19. In this manuscript, we use
the phrase surface tension, denoted by Υ , to denote an isotropic
strain-independent surface stress.

Recent work has underlined the importance of surface-tension
effects in soft solids. These solid capillary effects include the
smoothing out of ripples and corners in soft solids20, and quali-
tative changes to the phenomena of wetting21–26 and adhesion27–30.
Furthermore, the competition of surface tension and elasticity

can select the wavelength of pearling and creasing instabilities31,32.
Surface-tension effects typically appear in solids at length scales
.L≡Υ/E, where E is Young’s modulus of the solid. In simple terms,
this elastocapillary length represents the wavelength below which
surface tension is capable of significantly deforming a solid21,27.
Thus, it is reasonable to expect that when inclusions in an elastic
body have a characteristic size R<L, capillarity will become impor-
tant and Eshelby’s theory will not apply. This has been suggested
by various theoretical studies (for example, refs 33,34) and recent
experiments on air bubbles embedded in emulsions35.

Here, we demonstrate the impact of surface tension on the
mechanical response of fluid inclusions in a soft solid matrix.
We find that the deformation of isolated liquid inclusions
in a macroscopic stress field depends strongly on their size.
Although large-droplet deformations are consistent with Eshelby
theory, droplets with radii below the elastocapillary scale deform
significantly less than predicted. Furthermore, whereas finite
concentrations of large droplets make a solid more compliant,
droplets smaller than the elastocapillary scale make it stiffer. A
generalization of Eshelby’s theory, accounting for surface tension,
captures our experimental observations, and provides simple
analytical results useful for the design of composites.

Stretching single inclusions
We tested Eshelby’s inclusion theory in soft solids by observing the
microscopic deformation of droplets embedded in macroscopically
deformed solids (Fig. 1a,b and Supplementary Section 1).We coated
the soft solid on a thin, elastic sheet, and stretched it uniaxially,
measuring the exact applied strain (ε∞x ,ε∞y ) by tracking fluorescent
particles attached to the surface of the sheet (Supplementary
Fig. 1). The applied strain in the uniaxial stretch direction is ε∞x
and ε∞y is the smaller, associated contraction that arises in the
perpendicular, in-plane direction. The stretch lengthens the droplets
in the x-direction, and we imaged them at their equator from
below with a ×60, NA 1.2, water objective. The droplets are ionic
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Figure 1 | Stretching droplets embedded in soft solids. a, The sample is clamped and stretched in the x-direction. b, Example images of ionic-liquid
droplets in a soft, silicone solid E= 1.7 kPa. Larger droplets deform more at the same applied strain. Overlay shows small (blue), medium (red) and large
(green) droplet images combined together for shape comparison.

liquid (1-ethyl-3-methylimidazolium dicyanamide, Ionic Liquids
Technologies) and are completely immiscible in the silicone gel that
we use for the solid phase. Silicone gels of two different stiffnesses
(E= 1.7 kPa, E= 100 kPa) were prepared by mixing together base
and crosslinker at different ratios and curing at room temperature
for 16 h, as described in Supplementary Section 2. Silicone gel is
ideal for these experiments as it behaves like a linear-elastic solid
up to large strains. Supplementary Fig. 2 shows example rheology
for the soft, E=1.7 kPa silicone.

The theory of Eshelby predicts that stretched inclusion shapes
depend only on the applied strain, and not on droplet size. We
confirmed this result for droplets embedded in a stiff, 100 kPa
matrix (Supplementary Fig. 3). However, micrometre-sized droplets
behave quite differently in a compliant 1.7 kPa matrix (Fig. 1b).
Here, small droplets are significantly less deformed than large
droplets under the same macroscopic strain.

Small liquid droplets seems stiffer than the surrounding solid
matrix. Figure 2a gives the aspect ratio, AR=`/w, of eight droplets
of different initial radii R at different stretches. As expected for
a linear-elastic solid, the aspect ratio increases linearly with ε∞x .
However, it also increases with R. In other words, large droplets
are deformed more by the stretch, and smaller droplets seem
‘stiffer’. The dotted/continuous line shows Eshelby’s predictions:
AR=(3+5ε∞x )/(3+5ε∞y ) for incompressible, spherical liquid
inclusions, and AR=1 for rigid spherical inclusions3. We also plot
Eshelby’s prediction for an inclusion identical to the surrounding
solid, AR = (1 + ε∞x )/(1 + ε∞y ) as the dashed-dotted line—this
represents the bulk deformation of the solid matrix. The largest
droplet agrees well with the incompressible liquid limit. Smaller
droplets seem stiffer, with the smallest droplets approaching the
rigid inclusion limit.

The stiffening effect in small droplets seems to arise at a strain-
independent length scale. Figure 2b shows the aspect ratio of
many droplets as a function of their length, `, for six different
strains. For each strain, the aspect ratio is insensitive to the size
of large droplets (&30 µm). However, AR drops off sharply for
smaller droplets. It is interesting to note that a qualitatively similar
dependence of shape on size is seen for droplets in viscous shear or
extensional flows36.

Composite sti�ness
According to Eshelby’s classic result3, liquid inclusions, which
have zero Young’s modulus, should reduce the stiffness of a solid
composite. However, our data show that small, isolated droplets
resist deformation more strongly than one would expect from
Eshelby’s theory. Now, we explore the impact of the increase in
apparent stiffness of single droplets on the macroscopic stiffness
of a composite. We made soft composites out of silicone gel
and glycerol droplets by mixing silicone, glycerol (Sigma-Aldrich)

and a small quantity of surfactant (Gransurf 50C-HM, Grant
Industries) using a hand blender. Glycerol is used in place of
the ionic liquid as it is cheap, non-toxic, and almost completely
immiscible in silicone. We degassed the resulting emulsion in
a vacuum, poured it into a mould and then cured it at 60 ◦C
for two hours. This gives composites of droplets embedded in
silicone with R=O(1 µm), at volume fractions φ from 4 to 20%
(Supplementary Fig. 4). As explained in Supplementary Section 2b
and Fig. 5, we ignore composites with φ<4.4% to ensure that the
stiffness of the continuous phase of the composite is unaffected by
the surfactant.

Stiff and compliant solids have opposing responses to liquid
inclusions. We measured the composite Young’s modulus Ec by
macroscopic indentation (see Supplementary Section 2 for detailed
protocols). Figure 3a,b shows how composite stiffness changes with
increasing liquid content for composites with a stiffer solid matrix
with E∼100 kPa and a more compliant solid matrix with E∼3 kPa,
respectively. The stiff-matrix composite becomes softer as the liq-
uid content increases. This makes intuitive sense—as we replace
a fraction of the solid by holes with no shear modulus, we see a
proportional decrease to the stiffness. In fact, the data agrees with
Eshelby’s prediction for the stiffness of a solid containing dilute em-
bedded monodisperse, incompressible droplets, Ec=E/(1+5φ/3)
(ref. 3). The compliant-matrix composite shows the opposite trend:
stiffening with liquid content. Stiffness increases by around a third
with a 20% increase in liquid content. The composites are elastic
up to shear strains of ∼100%, and behave identically in subsequent
cycles of indentation (see Supplementary Section 2c and Fig. 6).
Thus, we find that the soft-matrix composite is unexpectedly stiffer
than the pure soft solid, without a significant loss in strength.
Conventional composite theory, such as Eshelby theory3, the law
of mixtures, and the Hashin–Shtrikman bounds4 uniformly predict
decreasing stiffness with increased fraction of liquid inclusions and,
therefore, cannot describe this behaviour (for example, Fig. 3). In
a similar vein, recent experiments have shown that the stiffness of
an emulsion was unaffected when embedded bubbles were suffi-
ciently small35.

Theory and discussion
The experimental data suggest that conventional composite theory
fails to describe our experiments because of the effect of surface
tension at the liquid/solid interface. Surface tension typically acts
to smooth out interfaces and drive them towards a constant
curvature. In a solid, surface tension is typically overwhelmed
by bulk elasticity. However, surface tension can cause significant
deformations in compliant solids (for example, ref. 37). In our
experiments, surface tension acts to keep liquid inclusions spherical,
opposing any applied stretch. Thus, surface tension can qualitatively
explain the main features of our data. This echoes recent results
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Figure 2 | Aspect ratio of stretched ionic-liquid droplets in a soft
(E=1.7 kPa) silicone gel as a function of size and strain. a, Aspect ratios of
eight droplets of di�erent sizes increase linearly with applied strain. The
dashed–dotted line shows the change in aspect ratio of the solid under the
applied strain ε∞x ,ε∞y . Large droplets (R& 5µm) stretch more than the solid.
Smaller droplets stretch less. The dotted (continuous) line shows the
prediction from Eshelby theory for incompressible liquid (rigid) solid
inclusions respectively3. b, Aspect ratio of droplets depends sensitively on
size. Di�erent colours correspond to di�erent applied strains. Dashed
curves show theoretical predictions using equations (2) and (3) with
Υ =0.0036 N m−1.

on wetting and adhesion on compliant silicones, where capillary
affects arose below a length scale of O(10 µm), similar to that
seen in Fig. 2b22,23,27. Here, we modify Eshelby theory to account
for solid surface tension, and show that it accurately describes
our data.

We consider an incompressible droplet embedded in a linear-
elastic solid with a surface tension that acts on the droplet boundary.
The solid’s displacements, u, obey the equation:

(1−2ν)∇2u+∇(∇ ·u)=0 (1)

where ν is Poisson’s ratio and we apply far-field strain boundary
conditions ε=ε∞. At the surface of the droplet, σ ·n=−pn+ΥKn,
where σ is the stress tensor in the solid, n is the normal vector to
the deformed surface, p is the pressure in the droplet and K is the
curvature of the deformed surface. Note that we assume a surface
tension that is independent of surface strain. This is generally a
good approximation for gels, although it is not true in general17,34.
We derive analytic solutions to equation (1) (ref. 38) by extending
previous work39. In the particular case of far-field, plane-stress
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Figure 3 | Young’s modulus of soft composites as a function of liquid
content. Glycerol droplets embedded in E∼ 100 kPa (a) and E∼3 kPa (b)
silicone gels. Dashed curves show Eshelby’s predictions for incompressible
liquid droplets in an incompressible solid with Young’s modulus E.

boundary conditions (as in our experiment) εxx=ε∞x , εyy=ε∞y and
σzz=0, the length and width of the stretched droplet are

`=2R
[
1+

5(2ε1−ε2)
6+15 Υ

ER

]
(2)

and

w=2R
[
1+

5(2ε2−ε1)
6+15 Υ

ER

]
(3)

where ε1 = (ε∞x + νε∞y )/(1− ν2) and ε2 = (νε∞x + ε∞y )/(1− ν2).
In the limit Υ = 0, this reduces to Eshelby’s predictions. In the
limit Υ/ER� 1, surface tension dominates and the droplets stay
spherical, as the elastic stresses become insufficient to deform
the droplet from its preferred shape. The dependence on the
parameter Υ/ER indicates that surface-tension effects start to
arise when the size of the droplets approaches the elastocapillary
length L=Υ/E (ref. 40). This is similar to previous experiments
where solid capillarity becomes important: for example, contact
mechanics results are altered when the size of the indenter is .L
(refs 27–29), droplet contact angles change when drop radii are
.L (refs 21,22), and thin fibres undergo instabilities when their
diameters are .L (ref. 31).

Our theory agrees well with the isolated droplet data with one
fitting parameter—the unknown surface tension Υ . In Fig. 2b, we
plot the aspect ratio predicted by equations (2) and (3), using
ν=1/2, E=1.7 kPa and Υ =0.0036Nm−1. The results agree with
the experiments up to large strains, suggesting that surface tension is
indeed controlling droplet shape for small droplets. The agreement
is surprisingly good as we use a linear-elastic theory which is
only strictly appropriate when ε . 10%, or equivalently when ε∞x ,
ε∞y . 10% (ref. 38). Note that the value of the surface tension is
smaller than we expected; we measured surface tension of an ionic
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liquid in uncured silicone to be 0.025Nm−1 using the pendant drop
method, and we might expect this value to be close to Υ . This
difference cannot be explained by measurement error, suggesting
that there is a significant change in the silicone/ionic-liquid
interface on crosslinking. This is not unprecedented—previous
measurements have shown that there can be significant differences
between liquid and solid surface tensions of silicone22,24,41.

The individual droplet data collapses onto a single master curve
when the ratio of the microscopic to macroscopic strains is plotted
against the undeformed droplet radius (Fig. 4a). Using equations (2)
and (3), we can obtain an estimate of the undeformed radii, R∗
(R is unknown, as we did not track individual droplets from their
undeformed state for this large data set):

R∗=
`

2
−

A
2
(2ε1−ε2) (4)

where

A≡
(`−w)(1+ν)
3(ε∞x −ε∞y )

=
10ER2

6ER+15Υ
(5)

and the second equality comes from equations (2) and (3).
The ratio 2A/R∗ compares the microscopic droplet strain to the
macroscopic applied strain. Moreover, 2A/R∗ and R∗ depend
only on measured quantities, and nicely collapse the data over
a factor of 70 in droplet size, and a range of strains from 5.6
to 42.2% (Fig. 4a). There are two regimes: for droplets of size
R∗ . 10 µm, (`−w)/R∗∝(ε∞x −ε∞y )R∗, whereas for larger droplets
(`−w)/R∗∝(ε∞x −ε∞y ). From equation (5), we can interpret this
as the crossover from capillary- to elastic-dominated regimes as R
crosses Υ/E. Note that although our theory effectively collapses the
data onto a universal curve, the data in the capillary regime seems
to have a stronger dependence on droplet size than predicted.

Our isolated droplet theory can be applied to predict composite
stiffnesses3,42. Eshelby showed that the stiffness of a composite
consisting of identical dilute inclusions can be calculated from the
excess energy of individual strained inclusions3; if the extra strain
energy due to the presence of a single inclusion in a uniaxially
stretched solid is W (σ∞,E,R,Υ ), where σ∞ is the applied stress,
then the average strain energy density in a dilute composite is

E=
1
2
(σ∞)

2

E
+
φW
4
3πR3

(6)

and Young’s modulus of the composite is Ec = (σ
∞)

2
/2E . We

can use equation (6) to predict the stiffness of a composite with
monodisperse, incompressible inclusions with surface tension38. For
the particular case of an incompressible solid,

Ec=E
1+ 5

2
Υ

ER
5
2
Υ

ER (1−φ)+(1+
5
3φ)

(7)

In the limit of small surface tension, or large droplets (R�Υ/E),
this reduces to Eshelby’s result for liquid droplets in an elastic solid,
which is Ec=E/(1+5φ/3). When elasticity dominates over surface
tension (R�Υ/E), we obtain Ec=E/(1−φ), and the material is
stiffened by the inclusions. This differs fromEshelby’s result for rigid
particles embedded in an elastic composite, Ec=E/(1−5φ/2)—
although surface tension keeps the droplets spherical, they are
distinct from rigid particles because they have zero shear stress at
their surfaces. Equation (7) predicts that composites are stiffened by
droplets whenR<1.5Υ/E. Figure 4b shows how composite stiffness
depends on liquid fraction, as predicted by equation (7) for different
values of Υ/ER. Intriguingly, we predict no change of the effective
modulus of the composite when R= 1.5Υ/E. This suggests that
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Figure 4 | Theoretical predictions of composite behaviour. a, The data
from Fig. 2b collapses onto a master curve when plotting the ratio of the
microscopic to macroscopic strains (equations (4) and (5)) against the
estimated radius (equation (4)). The dashed curve shows the theoretical
prediction in equation (5). b, E�ective Young’s modulus of a composite
consisting of monodisperse droplets embedded in a uniform solid, from
equation (7). The blue(black) data points are the composite sti�ness data
from Fig. 3 scaled by E=3 kPa (E= 100 kPa) for the soft (sti�) composites
respectively. c, Droplets with surface tension can be considered as
equivalent elastic inclusions without surface tension. The red curve shows
how the sti�ness of the equivalent elastic inclusion, Ei, depends on Υ/ER.
For small Υ/ER, this agrees fairly well with the approximation Ei=2Υ/R,
shown by the blue line.

surface tension can effectively cloak the far-field elastic signature
of inclusions43,44.

This theory for composite stiffness is consistent with our
experimental data. Figure 4b includes the data from Fig. 3,
normalized by E = 3 kPa and E = 100 kPa for the softer and
stiffer composites respectively. The soft-matrix composite results
are modelled well by the surface-tension-dominated theory. The
stiff-matrix composite results are modelled well by the theory
with little, or no, surface-tension effects. Using rough estimates
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of Υ ∼14mNm−1 (Supplementary Section 2b) and R∼ 1 µm, we
indeed expect surface tension to dominate for the soft-matrix
composite (Υ/ER>1), and to be small for the stiff-matrix composite
(Υ/ER< 1). Note that the experimental data for the soft-matrix
composite is consistently stiffer than the upper limit of our theory.
We suspect that this is due to formation of chain-like structures of
droplets (Supplementary Fig. 4). Our theory is strictly valid only in
the limit of isolated droplets.

We can greatly simplify the above results to give a simple physical
picture of the effect of surface tension in soft composites. The
stiffness of a composite of incompressible elastic inclusions with
Young’smodulus Ei in a solid ofmodulus E, according to Eshelby3, is

Ec=E
1+ 2

3
Ei
E(

2
3 −

5φ
3

) Ei
E +(1+

5
3φ)

(8)

If we equate equations (7) and (8), we find that embedded droplets
are equivalent to elastic inclusions42 with stiffness

Ei=E
24 Υ

ER

10+9 Υ

ER

(9)

This recovers the result of ref. 35 (derived using equivalent
inclusion dipoles) that was successfully used to describe bubbles
in soft emulsions. When Υ/ER�1, the droplets behave like
inclusions with Young’s modulus Ei = 12Υ/5R. This value is
close to the droplet Laplace pressure Ei = 2Υ/R, which is often
taken as its stiffness for describing the composite stiffness of
emulsions and gels45. In the capillary-dominated regime,Υ/ER�1,
the effective Young’s modulus of the inclusions saturates at
Ei=8E/3. Thus the droplets cannot have an arbitrarily increasing
effective stiffness as they get smaller, as the common Ei = 2Υ/R
ansatz suggests. By replacing capillary-dominated inclusions with
equivalent elastic inclusions described by equation (9) (for example,
refs 35,42), one can use established composite theory such as
Mori–Tanaka homogenization5,35 or self-consistent methods46 to
predict denser composite stiffnesses. Futurework can also generalize
the Hashin–Shtrikman bounds on composite moduli4 to include
surface tension—either using equivalent elastic inclusions, or by
using the thin-layer analogy for interface area introduced for the
case of surface-strain-dependent surface stresses15,47.

Our experimental and theoretical results show that surface
tension can be important for soft composites consisting of a
liquid phase embedded in a continuous solid phase. We expect
that surface tension will be important for solid/solid composites
whenever R. 100Υ/E1, 100Υ/E2, where E1, E2 are the stiffnesses
of the two solids. For compliant materials such as gels with
E =O(kPa), capillarity needs to be addressed at scales of up to
O(100 µm) (refs 31,35). For stiffer materials, such as elastomers,
with E =O(MPa), capillarity needs to be addressed at scales of
up to O(100 nm). Capillary effects should negligible in structural
materials, such as glass and ceramics, with E=O(GPa).

We expect that our results should be of use in understanding the
mechanical properties of soft tissues, especially in soft connective
tissues. For example, the cortical tension of fibroblasts may
have a larger impact on the bulk mechanical properties of a
collagenous tissue than the fibroblasts’ elastic moduli48,49. Our
results complement new approaches to measuring mechanical
forces within three dimensional tissues by quantification of the
deformation of embedded liquid droplets50.

Our theoretical results include simple analytic expressions for
individual droplet deformation and for the properties of the bulk
composite that can be readily applied to the design of newmaterials.
They suggest that surface tension provides a relatively simple and
effective means to cloak the elastic signature of inclusions in
soft materials.
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