
Astronomy 111          Fall 2017 
             Homework Assignment #4 

(remember: no ragged edges; write on one side of page only 
to leave room for comments/corrections) 

due in class Thu. 11/2 
               

1. (based on a problem in Carroll & Ostlie) 
For the calculations you will do below, e=1.6 x 10-19 in SI units, k=1.38 x 10-23J/K, and h=6.62 x 
10-34 J-sec. We covered the basic concept in class about quantum mechanical tunneling being 
necessary in order for fusion to occur in the sun and other stars. Here you will actually calculate 
that this is true: 
 
Consider two protons in the core of the sun. The height of the potential energy barrier, as shown 
below, goes as 1/r for large separation (Coulomb repulsion), and becomes negative (attractive) at 
small separations, as the strong nuclear force dominates over the Coulomb repulsion. 
 

 

 If we assume that the energy required to overcome the Coulomb barrier is provided by the 
thermal (kinetic) energy of the gas, and that all protons are non-relativistic, then we can 
estimate the temperature, Tclassical, as follows. If we equate the average kinetic energy of an 

incoming proton to the energy of the Coulomb barrier at r, we find 
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€ 

2αe2

3kr
. 

a) Assume a separation equal to that of the proton radius (10-15 m). Calculate Tclassical 
and compare it with the actual central temperature of the Sun, and comment. 

 Now, if we assume that for quantum tunneling to occur a proton must be within one deBroglie 
wavelength (λ=h/p, where h is Planck’s constant and p is the momentum) of the target. We 

can rewrite the kinetic energy in terms of momentum: 
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. If we set the distance of 

closest approach equal to one proton wavelength and let the barrier height equal the original 



kinetic energy, we find 
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b) Solve the above equation for λ  and substitute r = λ  in the equation for Tclassical, which 
now becomes Tquantum. Solve for Tquantum and compare it with the actual central 
temperature of the Sun, and comment. 

  

2. (a) The Earth's atmosphere is (very nearly) in hydrostatic equilibrium. What does this imply 
about the pressure as a function of altitude? 

    (b) The pressure at sea level is 1 atmosphere = 105 Pascals. (The Pascal is the SI unit of 
pressure, equal to 1 newton/square meter.) Use the equation of hydrostatic equilibrium 
(dP/dR = -gρ ), to calculate dP (the change in atmospheric pressure) as one ascends to 
Denver, whose altitude is 1600 m. You will need to know that the mass density, ρ, of the 
atmosphere at sea level is roughly 1 kg/m3, and that g is the acceleration of gravity at sea 
level, which you can look up. Assume that g and ρ are constant. What percentage of sea-
level pressure is Denver's atmospheric pressure? Compare this answer with what you get 
from using the more exact scale height expression:  
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where R is in km. Did we make much of an error assuming g and ρ are constant? 

    (c)  Do the same calculations for Mauna Kea, whose altitude is 4300 m. Are you surprised that 
oxygen is sometimes needed for observers at the summit? 
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