Problems for Tutorial Week \#2 The Celestial Sphere \& Time

Remember to use degrees (not hours) with trigonometric functions. Do not over-round-off, but do not carry excessive decimal places either. Express answers in degrees, arcminutes, and arcseconds or hours, minutes and seconds as appropriate. (Some problems based on Eric Jensen's.)

Chromey: Chapter 3: 1, 3, 8, 9

1. With online planetarium: Set sliders as follows: date to Sept. 30, 2017, time to 20:00, field of view to 120°. Click and drag in the star field until you are facing "East." Defaults for other parameters are fine.
a) Slowly slide the date slider forward in time from September 30 to November 15 (shown in the readout box in the lower right) and describe what happens. Return to September 30.
b) Slowly slide the time slider forward from 20:00 to 23:00 and describe what happens.
c) Compare your answers to a) and b) and explain the comparison.
2. a) An optically observed G dwarf star has galactic coordinates $\ell=283^{\circ}$ and $b=-2^{\circ}$. What can you conclude regarding whether it is located in the disk or halo of the Galaxy?
b) Same as (a), but for $l=32^{\circ}$ and $b=+87^{\circ}$.
c) A radio source has galactic coordinates $\ell=202^{\circ}$ and $b=+3^{\circ}$. What can you conclude regarding its distance from the galactic center compared to the Sun's distance from the galactic center?
d) Same as (c), but for $\ell=15^{\circ}$ and $b=-2^{\circ}$.
3. We refer to the units of Right Ascension (RA, or α) as hours, minutes and seconds of time to distinguish them from arcminutes and arcseconds.
a) Why is RA given in hours rather than degrees? (It certainly can be given in degrees, and sometimes is, but usually is not.)
b) What kind of time is RA? That is, is one second of RA a solar second or a sidereal second?
c) How is the zero point of RA defined? At what time(s) of year could you observe an object with RA=0 at optical wavelengths?
4. Explain why there is one more sidereal day than solar day in a year.
5. I was once at a meeting at a midwestern university that was also attended by an eminent astronomer, a theorist. At one point this astronomer asked the assembled colleagues why they had never observed the Magellanic Clouds from their on-campus observatory. What answer did they give?
6. a) Derive the relation between a fixed RA interval (e.g., 1^{h}) and the amount of arc it corresponds to. What are these values at declinations of $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 75° ?
b) The field of view of our 24 -inch telescope's CCD is 1200 arcseconds on a side. At the celestial equator, $\delta=0^{\circ}$, this corresponds to $1^{\mathrm{m}} 20^{\mathrm{s}}$ of RA. Calculate the corresponding RA intervals when we observe at the following declinations: $20^{\circ}, 40^{\circ}, 60,70^{\circ}, 80^{\circ}$, and 85°.
7. Assuming you can observe between roughly 7:30 PM and 5:30 AM on November 1, what is the approximate range of RA that will cross the meridian during this time?
