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•Tunable quantum oscillator 
involving the 
superconducting current 
of billions of Cooper pairs
•Distinct spectroscopic 
transitions between energy 
levels can be probed by 
microwaves. 
• 
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Tunable Oscillator

Sweep of  bias current allows experimental control of  energy levels.  
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Multi-Photon Spectroscopy

Isolation
Qubit

50 µm

Sudeep Dutta et al. (Univ. Maryland) 

Hypres Inc. 

I (µ A)

f  (GHz)

Each microwave transition is an excitation of  the junction with an 
increased tunneling rate.  Bright indicates a large number of  tunneling 

events, dark a small number of  events.

1 → 2

0 → 1

2 → 33 → 4

0 ⇒ 21 ⇒ 32 ⇒ 4
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Multi-Photon Rabi Oscillations

I (
µ

A
)

Time (ns)

I (
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Theory (without decoherence) Experiment

Rabi frequency (1-photon) Stark shift (1-photon) Rabi frequency (2-photon)

0 ↔ 1

0 ⇔ 2

F. W. Strauch et al., IEEE Trans. Appl. Supercond. 17, 105-108 (2007)
Tuesday, November 22, 2011



Artificial Molecules

A. J. Berkley, H. Xu, R. C. Ramos, 
M. A. Gubrud, F. W. Strauch et 
al., Science, 300, 1548 (2003).

“Entangled Macroscopic Quantum States in Two 
Superconducting Qubits”

|01> + |10>

|01> - |10>

 |01>

 |01>

 |10>

 |10>
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Capacitively Coupled Josephson 
Junctions
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•Energy states are 
unentangled away from 
avoided level crossings.

•Entanglement is 
maximized at the avoided 
level crossings.

Energy Spectrum
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ω1 ≈ ω0 (1+ε/2)
ω2 ≈ ω0 (1−ε/2)
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Gate Design

• Control: Interactions controllable (tuned on and off) 
through bias currents for small coupling.  

     (e.g. ζ = 0.01)
• Dynamical conditions: Characteristic ramp time must 

satisfy

• Leakage: Both tunneling and evolution through the 
auxiliary states |02〉 and |20〉 must be taken into 
account.

      Ns = ∆U/ħω ≥ 4
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Gate Operation

• Start from detuned junctions. 
• Ramp bias currents, in time 
τR, from εA to εB. 

• Wait for time τI.
• Detune the junctions.
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Swap-Like Operation
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Why these numbers?
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Energy Spectrum
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Auxiliary Level Dynamics
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Energy shift of |11〉is second-order, but state mixing is first 
order:
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Optimizing the Swap Gate
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Average error is:
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≈   4% for ζ = 0.01 and Ns = 3
≈ 14% for ζ = 0.01 and Ns = 5
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Figure 6.8: Energy ratio RE as function of Ns. For Ns = 5.1592, we have RE = 4.

Fig. 6.9(a), we show the time-dependence of the ground state population p0;0(t) of

state |0, εA) and the cosine ramp from εA to εB and back. In Fig. 6.9(b) we show the

population of |1, εA) and |2, εA) as a function of time, when the initial condition is

|1, εA) ! |10, εA). We observe a nearly complete swap to |01, εA). Similarly, we see

in Fig. 6.9(c), the populations of |1, εA) and |2, εA) as a function of time when the

initial condition is |2, εA) ! |01, εA), and that no swap occurs in the other states.

Finally, the populations of states |4, εA) and |5, εA) are shown in Fig. 6.9(d),

when the initial condition is |4, εA) ! |11, εA). There are two oscillations since we

have k = 2 for the full swap. The wave function for the swap of |10; εA) to |01; εA)

is shown in Fig. 6.10.

6.2.3 Gate Fidelity

To evaluate the success of these two-qubit operations, we consider the following

scenario. We are given a two-qubit gate V meant to approximate the ideal two-

qubit gate W , and allow V to act on an input state |Ψ〉. We then perform a test to

261

The error can be minimized by synchronizing the oscillations of p11 
with the swap oscillations, by tuning both qubits’ energies (through Ns):

For Ns = 5.16, the |11〉oscillations 
are four times as fast as the swap 
oscillations. 
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Phase Gate Operation

This avoided level crossing is isolated, so 
the other two-qubit states |00〉, |01〉 and |10〉 
are unaffected.
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Nonadiabatic Phase Gate
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Nonadiabatic Phase Gate
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Quantum Logic Gates

ω0/2π= 6 GHzTime (1/ω0)
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Optimized Logic Gates
τR: Ramp Time

τI: Interaction Time

Phase Gate       
Fmax ~ 0.9999

Swap Gate    
Fmax ~ 0.99 
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Quantum State Transfer

d = 1
d = 2 d = 3 d = 4

One can transfer the state of a single qubit from site A to site B 
using a set of permanently coupled qubits with Hamiltonian: 

Dynamics of a single excitation (with ω = 0) maps onto a 
tight-bonding model with H = ħΩ , where the coupling 
matrix Ω is proportional to the adjacency matrix of the 
coupling graph.  Certain coupling schemes such as the 

hypercube  (M. Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)) lead 
to perfect state transfer:
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• Each vertex represents a qubit.  Quantum states travel 
along all paths simultaneously in superposition 
with full constructive interference, yielding 
perfect state transfer.

Hypercube State Transfer
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|Ψ〉 = α |0〉 +β |1〉 
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• Circuits do not need to 
be simple two-dimensional 

layouts.  

• Multi-layer interconnects 
allow many crossovers 
and complex couplings.

1 2 3Phase Qubit Cube

Tuesday, November 22, 2011



• Circuits do not need to 
be simple two-dimensional 

layouts.  

• Multi-layer interconnects 
allow many crossovers 
and complex couplings.

Courtesy Ray Simmonds, NIST Boulder

1 2 3Phase Qubit Cube
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Classical Hypercubes
• The hypercube design has previously been used 

for (classical) supercomputers such as the 
Connection Machine by Thinking 
Machines, co-founded by Daniel Hillis, for 
which Feynman was a consultant. 

CM-2d = 16 hypercube
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Phase Qubit Cube
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Cube Dynamics

Eigenvalues are nearly evenly spaced ⇒ almost perfect oscillations!
Spectrum

|0¼0〉

ω01/2π ≈ 5.76 GHz

3 ζ ω0/2π ≈ 180 MHz
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Tunable Cube Dynamics

Hypercube transport can be guided between any two sites by tuning 
qubit energies, all with the same propagation time!

Qubits in resonance
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Problem 1: Long-Range Coupling
The coupling of junctions is through the inverse capacitance matrix.

Long-range couplings distort the 
eigenvalue spectrum and degrade 
the state propagation. Effect gets 
worse with increasing hypercube 
dimension (d) and coupling (ζ).

Long-range couplings

Tight-binding simulation
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Correcting Long-Range Couplings
A simple fix is to vary the “on-site” energies (transition 
frequencies of each qubit) to compensate for the long-range 
couplings.  By perturbation theory (using the angular 
momentum mapping) one can show that, at lowest order, 
the optimal choice of energies is quadratic! 

d=10 hypercube

ω0 /2π = 6 GHz Cc/Cj = 0.01
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Corrected State Transfer

Tight-binding simulation
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Uncorrected spectrum

Corrected spectrum

After correcting spectrum, fidelity of state transfer becomes 
applicable to quantum information processing for reasonable 
coupling strengths and for modestly large hypercube networks.
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Problem 2: Disordered Couplings

Consistent with studies of localization (for disordered couplings): 

Even modest coupling disorder (~10%) has high transfer 
probability ( >95%), for 210 qubits! Tight-binding simulation
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Density matrix simulation

ω0 /2π = 6 GHz Cc/C = 0.01

ω1= ω8= ω0+Δω
ω2= ... = ω6 =ω0

For existing technology, transfer probabilities > 80% are possible.

Problem 3: Decoherence
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ω0 /2π = 6 GHz Cc/C = 0.01

ω1= ω8= ω0+Δω
ω2= ... = ω6 =ω0

For existing technology, transfer probabilities > 80% are possible.
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Tuesday, November 22, 2011



Conclusions
• Nonadiabatic gates can be designed for phase qubits 

(and transmons?) in the regime of strong coupling 
(>1%), provided one accounts for the coupling of 
the qubit states with the auxiliary levels.

• Simulated gates for phase qubits (with tunneling, 
nonadiabatic couplings beyond qubit+auxiliary 
levels) have fidelities greater than 0.99.

• Qubit designs can be extended from artificial atoms 
and molecules to artificial solids, such as 
hypercubes, with novel transport properties that can 
be demonstrated using existing technology.

32
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