

Quantum logic and perfect state transfer with superconducting phase qubits

Frederick W. Strauch Department of Physics Williams College

Outline

- Phase qubits
- Quantum logic gates
- Swap gate and higher levels
F.W. Strauch et al.,
- Nonadiabatic phase gate
- Perfect state transfer
- Phase qubit hypercube
F.W. Strauch and C. J.Williams, Phys. Rev. B 78, 0945 I6 (2008)
- Long-range couplings, decoherence, disorder
- Conclusions

Tunable Oscillator

$-\frac{\hbar^{2}}{2 C\left(\Phi_{0} / 2 \pi\right)^{2}} \frac{d^{2} \Psi}{d \gamma^{2}}-\frac{\Phi_{0}}{2 \pi}\left(I_{c} \cos \gamma+I_{b} \gamma\right) \Psi=E \Psi$

Sweep of bias current allows experimental control of energy levels.

Tunable Oscillator

$-\frac{\hbar^{2}}{2 C\left(\Phi_{0} / 2 \pi\right)^{2}} \frac{d^{2} \Psi}{d \gamma^{2}}-\frac{\Phi_{0}}{2 \pi}\left(I_{c} \cos \gamma+I_{b} \gamma\right) \Psi=E \Psi$

Sweep of bias current allows experimental control of energy levels.

Sudeep Dutta et al. (Univ. Maryland)

Each microwave transition is an excitation of the junction with an increased tunneling rate. Bright indicates a large number of tunneling events, dark a small number of events.

Multi-Photon Rabi Oscillations

Theory (without decoherence)

Experiment

Stark shift (1-photon)

Time (ns)
Rabi frequency (2-photon)

F. W. Strauch et al., IEEE Trans. Appl. Supercond. 17, 105-108 (2007)

Artificial Molecules

"Entangled Macroscopic Quantum States in Two Superconducting Qubits"

A.J. Berkley, H. Xu, R. C. Ramos, M.A. Gubrud, F.W. Strauch et al., Science, 300, I548 (2003).

Capacitively Coupled Josephson Junctions

$$
E_{C}=\frac{e^{2}}{2 C_{J}}, E_{J}=\frac{\hbar I_{C}}{2 e}
$$

$$
J_{1}=I_{1} / I_{C}, J_{2}=I_{2} / I_{C}
$$

$$
\square \infty+(
$$

$$
H=4 E_{C}(1+\zeta)^{-1}\left(p_{1}^{2}+p_{2}^{2}+2 \zeta p_{1} p_{2}\right)
$$

$-E_{J}\left(\cos \gamma_{1}+J_{1} \gamma_{1}+\cos \gamma_{2}+J_{2} \gamma_{2}\right)$

Energy Spectrum

$$
N_{s}=4, \zeta=0.01
$$

$$
\begin{aligned}
& \sqrt{1-J_{1,2}}=\sqrt{1-J_{0}}(1 \pm \varepsilon) \\
& \hbar \omega_{0}=\left(8 E_{C} E_{J}\right)^{1 / 2}\left(1-J_{0}^{2}\right)^{1 / 4}
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{1} \approx \omega_{0}(1+\varepsilon / 2) \\
& \omega_{2} \approx \omega_{0}(1-\varepsilon / 2)
\end{aligned}
$$

-Energy states are unentangled away from avoided level crossings.
-Entanglement is
maximized at the avoided level crossings.

Gate Design

- Control: Interactions controllable (tuned on and off) through bias currents for small coupling.

$$
(\text { e.g. } \zeta=0.01)
$$

- Dynamical conditions: Characteristic ramp time must satisfy

$$
\frac{2 \pi}{\omega_{0}}<\tau_{R}<\frac{1}{\zeta} \frac{2 \pi}{\omega_{0}} \approx 100 \times \frac{2 \pi}{\omega_{0}}
$$

- Leakage: Both tunneling and evolution through the auxiliary states $|02\rangle$ and $|20\rangle$ must be taken into account.

$$
\mathrm{N}_{\mathrm{s}}=\Delta \mathrm{U} / \hbar \omega \geq 4
$$

Gate Operation

- Start from detuned junctions
- Ramp bias currents, in time τ_{R}, from ε_{A} to ε_{B}.

Time

- Wait for time τ_{I}.
- Detune the junctions.

Swap-Like Operation

Swap-Like Operation

Why these numbers?

Energy Spectrum
 $$
N_{s}=4, \zeta=0.01
$$

ε

Auxiliary Level Dynamics

A high fidelity swap gate requires consideration of the auxiliary levels:

$$
E_{02}=E_{20}
$$

$$
\mathcal{H}=\left(\begin{array}{ccc}
E_{02} & 0 & \tilde{g} \\
0 & E_{20} & \tilde{g} \\
\tilde{g} & \tilde{g} & E_{11}
\end{array}\right) \quad \begin{gathered}
\tilde{g}=8 E_{c}(1+\zeta)^{-1}\langle 02| p_{1} p_{2}|11\rangle \approx 2^{-1 / 2} \zeta \hbar \omega_{01} \\
\Delta E=E_{11}-E_{02}=\hbar\left(\omega_{01}-\omega_{12}\right)
\end{gathered}
$$

Energy shift of $|11\rangle$ is second-order, but state mixing is first order:

$$
\left.\begin{array}{c}
\mathrm{r}: \quad \tan \theta=\frac{1}{2 \sqrt{2}}\left(\sqrt{(\Delta E / \tilde{g})^{2}+8}-(\Delta E / \tilde{g})\right) \approx \frac{\sqrt{2} g}{\Delta E} \\
\left|\Psi_{-}\right\rangle=2^{-1 / 2} \cos \theta(|02\rangle+|20\rangle)-\sin \theta|11\rangle \\
\left|\Psi_{0}\right\rangle=2^{-1 / 2}(|02\rangle-|20\rangle) \\
\left|\Psi_{+}\right\rangle=2^{-1 / 2} \cos \theta(|02\rangle+|20\rangle)+\sin \theta|11\rangle
\end{array}\right\} \begin{aligned}
& E_{ \pm}=E_{02}+\frac{1}{2}\left(\Delta E \pm \sqrt{\Delta E^{2}+8 g^{2}}\right) \approx\left\{\begin{array}{l}
E_{11}+2 g^{2} / \Delta E \\
E_{02}-2 g^{2} / \Delta E
\end{array}\right.
\end{aligned}
$$

Auxiliary Level Dynamics

A high fidelity swap gate requires consideration of the auxiliary levels:

$$
E_{02}=E_{20}
$$

$$
\mathcal{H}=\left(\begin{array}{ccc}
E_{02} & 0 & \tilde{g} \\
0 & E_{20} & \tilde{g} \\
\tilde{g} & \tilde{g} & E_{11}
\end{array}\right) \begin{gathered}
\tilde{g}=8 E_{c}(1+\zeta)^{-1}\langle 02| p_{1} p_{2}|11\rangle \approx 2^{-1 / 2} \zeta \hbar \omega_{01} \\
\Delta E=E_{11}-E_{02}=\hbar\left(\omega_{01}-\omega_{12}\right)
\end{gathered}
$$

Energy shift of $|11\rangle$ is second-order, but state mixing is first order:

$$
\begin{gathered}
\tan \theta=\frac{1}{2 \sqrt{2}}\left(\sqrt{(\Delta E / \tilde{g})^{2}+8}-(\Delta E / \tilde{g})\right) \approx \frac{\sqrt{2} g}{\Delta E} \\
\left|\Psi_{-}\right\rangle=2^{-1 / 2} \cos \theta(|02\rangle+|20\rangle)-\sin \theta|11\rangle \\
\left|\Psi_{0}\right\rangle=2^{-1 / 2}(|02\rangle-|20\rangle) \\
\left|\Psi_{+}\right\rangle=2^{-1 / 2} \cos \theta(|02\rangle+|20\rangle)+\sin \theta|11\rangle
\end{gathered} \begin{aligned}
& E_{ \pm}= E_{02}+\frac{1}{2}\left(\Delta E \pm \sqrt{\Delta E^{2}+8 g^{2}}\right) \approx\left\{\begin{array}{l}
E_{11}+2 g^{2} / \Delta E \\
E_{02}-2 g^{2} / \Delta E
\end{array}\right. \\
& \begin{array}{c}
p_{11}= \\
= \\
= \\
\\
=\cos ^{4} \theta+\sin ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta \cos \Omega t
\end{array}
\end{aligned}
$$

Optimizing the Swap Gate

$$
\begin{aligned}
p_{11} & \left.=\left|\langle 11| e^{-i \mathcal{H} t / \hbar}\right| 11\right\rangle\left.\right|^{2} \\
& =\cos ^{4} \theta+\sin ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta \cos \Omega t
\end{aligned}
$$

Average error is:

$$
\begin{aligned}
1-\left\langle p_{11}\right\rangle \approx 2 \theta^{2} \approx \frac{4 g^{2}}{\Delta E^{2}} \approx 4 \% \text { for } \zeta=0.01 \text { and } N_{s}=3 \\
\approx 14 \% \text { for } \zeta=0.01 \text { and } N_{s}=5
\end{aligned}
$$

The error can be minimized by synchronizing the oscillations of p_{11} with the swap oscillations, by tuning both qubits' energies (through N_{s}):

> For $N_{s}=5.16$, the $|11\rangle$ oscillations are four times as fast as the swap oscillations.

Phase Gate Operation

$$
|11\rangle \Rightarrow|02\rangle \Rightarrow-|11\rangle
$$

This avoided level crossing is isolated, so

$$
U_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$ the other two-qubit states $|00\rangle,|01\rangle$ and $|10\rangle$ are unaffected.

Nonadiabatic Phase Gate

$$
|11\rangle \Rightarrow|02\rangle \Rightarrow-|11\rangle
$$

Nonadiabatic Phase Gate

$$
|11\rangle \Rightarrow|02\rangle \Rightarrow-|11\rangle
$$

Quantum Logic Gates

Phase Gate
$\mathrm{F}=0.996, \mathrm{~T}_{\text {gate }}=14.85 \mathrm{~ns}$

Time ($1 / \omega_{0}$)

Swap Gate
$\mathrm{F}=0.972, \mathrm{~T}_{\text {gate }}=10.7 \mathrm{~ns}$

$\omega_{0} / 2 \pi=6 \mathrm{GHz}$

Optimized Logic Gates

τ_{R} : Ramp Time
τ_{I} : Interaction Time

> Phase Gate
> $F_{\max } \sim 0.9999$

Quantum State Transfer

One can transfer the state of a single qubit from site A to site B using a set of permanently coupled qubits with Hamiltonian:

$$
H=-\frac{1}{2} \sum_{j} \hbar \omega_{j} \sigma_{j}^{z}+\sum_{j k} \hbar \Omega_{j k}\left(\sigma_{j}^{+} \sigma_{k}^{-}+\sigma_{k}^{+} \sigma_{j}^{-}\right)
$$

Dynamics of a single excitation (with $\omega=0$) maps onto a tight-bonding model with $H=\hbar \Omega$, where the coupling matrix Ω is proportional to the adjacency matrix of the coupling graph. Certain coupling schemes such as the hypercube (M. Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)) lead to perfect state transfer:

$\mathrm{d}=3$

Hypercube State Transfer

- Each vertex represents a qubit. Quantum states travel along all paths simultaneously in superposition with full constructive interference, yielding perfect state transfer.

Hypercube State Transfer

- Each vertex represents a qubit. Quantum states travel along all paths simultaneously in superposition with full constructive interference, yielding perfect state transfer.

Hypercube State Transfer

- Each vertex represents a qubit. Quantum states travel along all paths simultaneously in superposition with full constructive interference, yielding perfect state transfer.

Hypercube State Transfer

- Each vertex represents a qubit. Quantum states travel along all paths simultaneously in superposition with full constructive interference, yielding perfect state transfer.

Phase Qubit Cube। 23

Circuits do not need to be simple two-dimensional layouts.

Multi-layer interconnects allow many crossovers and complex couplings.

Fabrication Process of Planarized Multi-Layer Nb Integrated Circuits
Tetsuro Satoh, Kenji Hinode. Hiroyuki Akaike, Shuichi Nagasawa. Yoshihiro Kitagawa, and Mutsuo Hidaka

Abstract

To improve the operating speed and densily of Nb ingle-flux-quantem integrated circuits, we developed an advanced fabrication process based on NEC's standard process. We fabricated planarized siv-Nb-layer circuit stractures using this advanced process. This new structure has four Nb wiring layers for greater dedgn Bexibility. To shield the magnetice fiedd produced by the DC blas current, the DC blas power supply layer of the Joseptisen junction was $10 \mathrm{kA} / \mathrm{cm}^{2}$. We fabricated and tested more than 10 wafers and demonstrated that the six-layer circuits were soccesxfully planarized. We alvo conifinedi insulaton between each Nb byer and the reliability of saperconducting

Phase Qubit Cube। 2

78

Fabrication Process of Planarized Multi-Layer Nb Integrated Circuits

Tetsuro Satoh, Kenji Hinode. Hiroyuki Akaike, Shuichi Nagasawa. Yoshihiro Kitagawa, and Mutsuo Hidaka

Abstract-To improve the operating speed and density of Nb ingle-llux-quantem integrated dircuits, we developed an advanesd fabrication process based of NEC's standard processWe fabricated planarized sk-Nb-layer circuit stractures using this advanced proces. This new structure has four Nb wiring layers for greater dedgn Bexibility. To shield the magnetice fied was placed under the groundplane. The critical current density of the Josepthon juection was $10 \mathrm{kA} / \mathrm{cm}^{2}$. We fabricated and tested more than 10 wafers and demonstrated that the six-layer dircuits were soccestally planarized. We also contirned insula tion betueen each Nb layer and the rellability of saperconducting

Classical Hypercubes

- The hypercube design has previously been used for (classical) supercomputers such as the Connection Machine by Thinking Machines, co-founded by Daniel Hillis, for which Feynman was a consultant.

Phase Qubit Cube

$$
H=\frac{1}{2}\left(\Phi_{0} / 2 \pi\right)^{-2} \sum_{j k} p_{j}\left(C^{-1}\right)_{j k} p_{k}-\left(\Phi_{0} / 2 \pi\right) \sum_{j}\left(I_{c j} \cos \gamma_{j}+I_{j} \gamma_{j}\right)
$$

$$
\zeta=\frac{C_{c}}{C_{j}+3 C_{c}}
$$

$$
C=\left(C_{j}+3 C_{c} c\left(\begin{array}{cccccccc}
1 & -\xi & -\xi & -\xi & 0 & 0 & 0 & 0 \\
-\xi & 1 & 0 & 0 & -\xi & -\xi & 0 & 0 \\
-\xi & 0 & 1 & 0 & -\xi & 0 & -\xi & 0 \\
-\xi & 0 & 0 & 1 & 0 & -\xi & -\xi & 0 \\
0 & -\xi & -\xi & 0 & 1 & 0 & 0 & -\xi \\
0 & -\zeta & 0 & -\xi & 0 & 1 & 0 & -\xi \\
0 & 0 & -\xi & -\xi & 0 & 0 & 1 & -\xi \\
0 & 0 & 0 & 0 & -\xi & -\xi & -\xi & 1
\end{array}\right)\right.
$$

Cube Dynamics

Eigenvalues are nearly evenly spaced \Rightarrow almost perfect oscillations!

Spectrum

$$
\varepsilon(k) \approx \hbar \omega_{0} \zeta k
$$

$3 \zeta \omega_{0} / 2 \pi \approx 180 \mathrm{MHz}$
$\left\{\begin{array}{l}\overline{-\overline{-}-\sum_{j} a_{j}\left|0 \cdots 1_{j} \cdots 0\right\rangle} \\ \omega_{01} / 2 \pi \approx 5.76 \mathrm{GHz} \\ |01 / 40\rangle\end{array}\right.$

Cube Dynamics

Eigenvalues are nearly evenly spaced \Rightarrow almost perfect oscillations!

Spectrum

$$
\varepsilon(k) \approx \hbar \omega_{0} \zeta k
$$

$3 \zeta \omega_{0} / 2 \pi \approx 180 \mathrm{MHz}$
$\left\{\begin{array}{l}\overline{-\overline{-}-\sum_{j} a_{j}\left|0 \cdots 1_{j} \cdots 0\right\rangle} \\ \omega_{01} / 2 \pi \approx 5.76 \mathrm{GHz} \\ |01 / 40\rangle\end{array}\right.$

Cube Dynamics

Eigenvalues are nearly evenly spaced \Rightarrow almost perfect oscillations!

Spectrum

$$
\varepsilon(k) \approx \hbar \omega_{0} \zeta k
$$

$3 \zeta \omega_{0} / 2 \pi \approx 180 \mathrm{MHz}$
$\left\{\begin{array}{l}\overline{-\overline{-}-\sum_{j} a_{j}\left|0 \cdots 1_{j} \cdots 0\right\rangle} \\ \omega_{01} / 2 \pi \approx 5.76 \mathrm{GHz} \\ |01 / 40\rangle\end{array}\right.$

Qubits in resonance

Hypercube transport can be guided between any two sites by tuning qubit energies, all with the same propagation time!

Problem 1: Long-Range Coupling

The coupling of junctions is through the inverse capacitance matrix.

$$
H=\frac{1}{2}\left(\Phi_{0} / 2 \pi\right)^{-2} \sum_{j k} p_{j l^{\prime}}^{\stackrel{-}{---1}\left(C^{-1}\right)_{j k_{1}} p_{k}} p_{k}-\left(\Phi_{0} / 2 \pi\right) \sum_{j}\left(I_{c j} \cos \gamma_{j}+I_{j} \gamma_{j}\right)
$$

$$
C=\left(C_{j}+d C_{c}\right)\left(I-\xi_{d} A_{d}\right), \zeta_{d}=C_{c} /\left(C_{j}+d C_{c}\right)
$$

$$
C^{-1}=\left(C_{j}+d C_{c}\right)^{-1}(I+\zeta_{d} A_{d}+\underbrace{\zeta_{d}^{2} A_{d}^{2}+\cdots})
$$

Long-range couplings

Long-range couplings distort the eigenvalue spectrum and degrade the state propagation. Effect gets worse with increasing hypercube dimension (d) and coupling (ऽ).

Tight-binding simulation

Correcting Long-Range Couplings

A simple fix is to vary the "on-site" energies (transition frequencies of each qubit) to compensate for the long-range couplings. By perturbation theory (using the angular momentum mapping) one can show that, at lowest order, the optimal choice of energies is quadratic!

$$
\Delta \omega_{k}=4 \omega_{0} \xi^{2}(k-d / 2)
$$

Corrected State Transfer

After correcting spectrum, fidelity of state transfer becomes applicable to quantum information processing for reasonable coupling strengths and for modestly large hypercube networks.

Tight-binding simulation

Corrected State Transfer

After correcting spectrum, fidelity of state transfer becomes applicable to quantum information processing for reasonable coupling strengths and for modestly large hypercube networks.

Tight-binding simulation

Problem 2: Disordered Couplings

Consistent with studies of localization (for disordered couplings):

$$
p_{d} \sim e^{-d / L}, L \sim\left(\Delta C_{c} / C_{c}\right)^{-2}
$$

Even modest coupling disorder ($\sim 10 \%$) has high transfer probability ($>95 \%$), for 2^{10} qubits!

Tight-binding simulation

Problem 3: Decoherence

$\mathrm{T}_{1}=106 \mathrm{~ns}, \mathrm{~T}_{2}=210 \mathrm{~ns}$
$\omega_{0} / 2 \pi=6 \mathrm{GHz}$
Cube $\quad \mathrm{C}_{\mathrm{c}} / \mathrm{C}=0.01$

$\omega_{1}=\omega_{8}=\omega_{0}+\Delta \omega$

$$
\mathrm{T}_{1}=106 \mathrm{~ns}, \mathrm{~T}_{2}=210 \mathrm{~ns}
$$

$$
\mathrm{T}_{1}=106 \mathrm{~ns}, \mathrm{~T}_{2}=67 \mathrm{~ns}
$$

Density matrix simulation
For existing technology, transfer probabilities $>80 \%$ are possible.

Problem 3: Decoherence
 C

$\mathrm{T}_{1}=106 \mathrm{~ns}, \mathrm{~T}_{2}=210 \mathrm{~ns}$
$\omega_{0} / 2 \pi=6 \mathrm{GHz}$
Cube $\quad \mathrm{C}_{\mathrm{c}} / \mathrm{C}=0.01$

$\omega_{1}=\omega_{8}=\omega_{0}+\Delta \omega$

$$
\mathrm{T}_{1}=106 \mathrm{~ns}, \mathrm{~T}_{2}=210 \mathrm{~ns}
$$

$$
\mathrm{T}_{1}=106 \mathrm{~ns}, \mathrm{~T}_{2}=67 \mathrm{~ns}
$$

Density matrix simulation
For existing technology, transfer probabilities $>80 \%$ are possible.

Conclusions

- Nonadiabatic gates can be designed for phase qubits (and transmons?) in the regime of strong coupling ($>1 \%$), provided one accounts for the coupling of the qubit states with the auxiliary levels.
- Simulated gates for phase qubits (with tunneling, nonadiabatic couplings beyond qubit+auxiliary levels) have fidelities greater than 0.99 .
- Qubit designs can be extended from artificial atoms and molecules to artificial solids, such as hypercubes, with novel transport properties that can be demonstrated using existing technology.

