Entanglement in Superconducting

Quantum Circuits

Frederick W. Strauch
Sigma Xi Talks
November 18, 2011

Timeline of QM + Entanglement

Entanglement

- "[The meaning of entanglement is]: the best possible knowledge of a whole does not necessarily include the best possible knowledge of all its parts, even though they may be entirely separate"

Quantum Computing

- Future devices that can harness entanglement to store and process information in parallel (quantum parallelism)

$\mathrm{Q}: \quad \mid$ input $\left._{1}\right\rangle+\mid$ input $\left._{2}\right\rangle+\cdots$

A: \mid input $\left._{1}\right\rangle \mid$ output $\left._{1}\right\rangle+\mid$ input $\left._{2}\right\rangle\left\langle\right.$ output $\left._{2}\right\rangle+\cdots$

Quantum Bits

- Any system with two distinct states can represent a bit (0 or 1), the fundamental unit of information.
- Any quantum system with two distinct states (or any superposition thereof) can represent a quantum bit (qubit) of quantum information (e.g. spins:

Cube-bit

$$
|0\rangle=|\backslash\rangle,|1\rangle=|\rrbracket\rangle
$$

$$
|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

Quantum Information Processing

- Quantum information allows superposition:
- 3 classical bits: 000 or 001 or 010 or ... 111
(8 distinct possibilities)
- 3 quantum bits:

$$
|\Psi\rangle=(|000\rangle+|001\rangle+|010\rangle+\ldots|111\rangle) / 2^{3 / 2}
$$

(8 simultaneous possibilities)

- Quantum computers use superpositions to sample large number of simultaneous possibilities:

Ψ
 Quantum Mechanics

- Quantized Energy: Energy comes in discrete packets (quanta), transferred by photons
- Uncertainty principle: position and momentum cannot be measured simultaneously (complementary properties)
- Superposition: Particles can be in many states or places at once (waveparticle duality)

Ψ
 Quantum Mechanics

Schrödinger's Equation

$$
i \hbar \partial_{t} \Psi(x, t)=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x, t)\right) \Psi(x, t)
$$

properties)

- Superposition: Particles can be in many states or places at once (waveparticle duality)

Outline

- Superconducting Quantum Circuits
- LC oscillators + Qubits
- Entangled Qubits
- through Capacitors + Resonators
- Entangled Resonators
- Resonator Networks, Quantum Machines and Beyond

Timeline of Superconducting Quantum Circuits

Macroscopic Superpositions?

Tony Leggett

- "Is there actually any evidence that macroscopic systems can ... be in quantum states which are linear superpositions of states with different macroscopic properties?"
- If the answer is NO, perhaps QM is simply not valid at the macroscopic level and some new law of nature prevents Schrödinger's Cat from ever getting out of the bag!
- He encouraged a study of certain quantum effects in superconductors

Prog. Theor. Phys. Suppl. 6980 (1980)
J. Phys.: Condens. Matter 14 R415 (2002)

Superconductivity

- In a normal conductor (at large temperatures), each electron moves independently.
- In a superconductor, the electrons form Cooper pairs; each center-of-mass moves with the same velocity.

Low energy excitations (dominant at low temperatures) involve this net motion of the Cooper pairs, all acting as one large artificial atom!

Superconductivity

- In a normal conductor (at large temperatures), each electron moves independently.
- In a superconductor, the electrons form Cooper pairs; each center-of-mass moves with the same velocity.

Net Current

Low energy excitations (dominant at low temperatures) involve this net motion of the Cooper pairs, all acting as one large artificial atom!

Superconducting QCs

Potential for 10000s of quantum bits on a single microchip.

Schoelkopf Lab

Martinis Group, UC Santa Barbara

LC Oscillators

- Oscillating electric circuit
- Moving charges ~ Kinetic energy
- Stored electric fields ~ Potential energy

Simulation

- Energy oscillates at well-defined frequency (simple harmonic oscillator)

Superconducting LC

Other "Simple" Oscillators

$$
\begin{aligned}
& x=A \cos (2 \pi f t) \\
& T=2 \pi \sqrt{\frac{L}{g}} \\
& f=\frac{1}{2 \pi} \sqrt{\frac{g}{L}} \\
& \mathrm{~L}=1 \mathrm{~m}, \mathrm{f}=\mathbf{0 . 5 \mathrm { Hz } \text { Time (seconds) }} \\
& T=2 \pi \sqrt{\frac{m}{k}} \\
& f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}
\end{aligned}
$$

Ψ
 Quantum LC Oscillator

- Superconducting LC Oscillator described by a wavefunction for the total Cooper pair current $I=\Phi / L: \Psi(\Phi)$

$$
\begin{aligned}
& E=\frac{1}{2 C} Q^{2}+\frac{1}{2} L I^{2} \\
& \Leftrightarrow H=\frac{1}{2 C} p_{\Phi}{ }^{2}+\frac{1}{2 L} \Phi^{2} \approx \frac{1}{2 m} p^{2}+\frac{1}{2} m \omega^{2} x^{2}
\end{aligned}
$$

- This has equally spaced quantized energy levels.

$$
p \rightarrow-i \hbar \frac{d}{d x} \Rightarrow p_{\Phi} \rightarrow-i \hbar \frac{d}{d \Phi} \quad-\frac{\hbar^{2}}{2 C} \frac{d^{2} \Psi}{d \Phi^{2}}+\frac{1}{2 L} \Phi^{2} \Psi=E \Psi
$$

Ψ
 Quantum LC Oscillator

$-\frac{\hbar^{2}}{2 C} \frac{d^{2} \Psi}{d \Phi^{2}}+\frac{1}{2 L} \Phi^{2} \Psi=E \Psi$
$E_{n}=\hbar \omega_{0}\left(n+\frac{1}{2}\right), \omega_{0}=1 / \sqrt{L C}$

- This circuit allows the Cooper pair current to exhibit superposition!
- But there is a problem!
- Transitions between energy levels involve energy level differences, which are constant for a harmonic oscillator.
- There is no way to excite individual energy levels (e.g. $|0\rangle \leftrightarrow|1\rangle$).

Superconducting Oscillators

- Josephson Junctions change how electrons move (tunnel through barrier), giving a tunable inductor.

Josephson Junction

- Superconducting, tunable, anharmonic oscillator formed by an intrinsic capacitance, nonlinear inductor (energy stored through the phases of Cooper pairs).
- Circuit described by a wavefunction for the total Cooper pair current, given through the phase difference $\gamma: \quad I=I_{\mathrm{c}} \sin \gamma: \Psi(\gamma)$

$$
\begin{aligned}
& E=\frac{1}{2 C} Q^{2}-\frac{\Phi_{0}}{2 \pi}\left(I_{c} \cos \gamma+I_{b} \gamma\right), \Phi_{0}=\frac{h}{2 e} \\
& \Leftrightarrow H=\frac{1}{2 C\left(\Phi_{0} / 2 \pi\right)^{2}} p_{\gamma}^{2}-\frac{\Phi_{0}}{2 \pi}\left(I_{c} \cos \gamma+I_{b} \gamma\right) \\
& -\frac{\hbar^{2}}{2 C\left(\Phi_{0} / 2 \pi\right)^{2}} \frac{d^{2} \Psi}{d \gamma^{2}}-\frac{\Phi}{2 \pi}\left(I_{c} \cos \gamma+I_{b}\right) \psi=E \Psi
\end{aligned}
$$

Adjust both I_{c} and I_{b}

Tunable Quantum Oscillator

Tunable Quantum Oscillator

Adjust I_{C} (high to low) with $I_{b}=0$

$$
-\frac{\hbar^{2}}{2 C\left(\Phi_{0} / 2 \pi\right)^{2}} \frac{d^{2} \Psi}{d \gamma^{2}}-\frac{\Phi_{0}}{2 \pi}\left(I_{c} \cos \gamma+I_{b}\right) \Psi=E \Psi
$$

$$
=
$$

Amplitude

Tunable Quantum Oscillator

Adjust I_{c} (high to low) with $I_{b}=0$
$-\frac{\hbar^{2}}{2 C\left(\Phi_{0} / 2 \pi\right)^{2}} \frac{d^{2} \Psi}{d \gamma^{2}}-\frac{\Phi_{0}}{2 \pi}\left(I_{c} \cos \gamma+I_{b}\right) \Psi=E \Psi$

Phase Qubit Spectroscopy

Sudeep Dutta et al. (Univ. Maryland)

Each microwave transition is an excitation of the junction with an increased tunneling rate. Bright indicates a large number of tunneling events, dark a small number of events.

Superconducting Oscillators

Yale

- Key Properties:
- Oscillate like a pendulum
- Quantized Energy Levels:
- Tunable by external circuits!
- "Artificial Atoms"

Amplitude

Outline

- Superconducting Quantum Circuits
- LC oscillators + Qubits
- Entangled Qubits
- through Capacitors + Resonators
- Entangled Resonators
- Resonator Networks,

Quantum Machines and Beyond

Coupled Phase Qubits

Coupling
Capacitors Junction 2

$$
\begin{aligned}
H= & \frac{1}{2 m}(1+\xi)^{-1}\left(p_{1}^{2}+p_{2}^{2}+2 \xi p_{1} p_{2}\right) \\
& -\frac{\Phi_{0}}{2 \pi}\left(I_{c 1} \cos \gamma_{1}+I_{1} \gamma_{1}+I_{c 2} \cos \gamma_{2}+I_{2} \gamma_{2}\right)
\end{aligned}
$$

Coupled Phase Qubits: Theory

P. R. Johnson, F. W. Strauch et al., Pbysical Revien B 67, 020502(R) (2003).

F. W. Strauch et al., Pbysical Review Letters 91, 167005 (2003).

Quantum Logic Gates

Coupled Phase Qubits: Experiments

A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch et al., Science, 300, 1548 (2003).

Coupling Qubits by Resonant Cavities

"Coherent quantum state storage and transfer between two phase qubits via a resonant cavity", M. Sillanpaa, J. I. Park, and R. W. Simmonds, Nature 449, 438 (2007)

Qubit "Rides the Quantum Bus"

Superconducting Resonator

Bell Inequality Experiment

Create entangled qubits, measure all of their properties---violate Bell's inequality!
M. Ansmann et al., "Violation of Bell's inequality in Josephson phase qubits", Nature 461, 504 (2009)

Three-Qubit Entanglement

Schoelkopf Lab

Leo DiCarlo et al., "Preparation and measurement of three-qubit entanglement in a superconducting circuit", Nature 467, 574 (2010)

Three-Qubit Entanglement

Four Qubits + Five Resonators

Erik Lucero @ Martinis Group UCSB

Outline

- Superconducting Quantum Circuits
- LC oscillators + Qubits
- Entangled Qubits
- through Capacitors + Resonators
- Entangled Resonators
- Resonator Networks,

Quantum Machines and Beyond

Entangling Resonators

FWS, K Jacobs, and RW Simmonds, Phys. Rev. Lett. 105, 050501 (2010)

Algorithm to generate interesting entangled states, e.g. "NOON" states:

$$
\frac{1}{\sqrt{2}}\left(|N\rangle_{A}|0\rangle_{B}+|0\rangle_{A}|N\rangle_{B}\right)
$$

Arbitrary Control of a
 Superconducting Resonator
 $$
|0\rangle+i|3\rangle+|6\rangle
$$

 states in a microwave resonator. Colors denote the values of the Wigner quasi: probability distributions for each superposition state as a function of the complex phase-space amplitude a. Negative values of the probability reflect the quantum interferences. The agreement is good between the theoretical calculations (top panels) and the experimental values (bottom panels). (Adapted from ref. 1.)

- Martinis Group, UC Santa Barbara (2008)

Entangled Resonator Theory

R

$\mathrm{n}_{\mathrm{a}}=\#$ photons in resonator A $n_{b}=\#$ photons in resonator B
-Rabi pulses (R) drive qubit transitions $(q=0 \rightarrow 1)$

- Shift pulses ($\mathbf{A}+\mathbf{B}$) transfer quanta between qubit and resonators
-Program of A, B, R, can generate any entangled state we want!
$|\psi\rangle_{q u b i t}|3\rangle_{A}|0\rangle_{B}$

NOON State Example

High NOON state:

J.P. Dowling, Contemp. Phys. 49, 125 (2008)

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}\left(|3\rangle_{A}|0\rangle_{B}+|0\rangle_{A}|3\rangle_{B}\right)
$$

TABLE I: Procedure for $\Psi=|0,3,0\rangle+|0,0,3\rangle$

Step	Parameters	Quantum State
$R_{a, 1}$	$\Omega t_{q a, 1}=\pi / 2, \omega_{d}=\omega_{0}$	$\|0,0,0\rangle-i\|1,0,0\rangle$
A_{1}	$g_{a} t_{a, 1}=\pi / 2$	$\|0,0,0\rangle-\|0,1,0\rangle$
$R_{a, 2}$	$\Omega t_{q a, 2}=\pi, \omega_{d}=\omega_{1}$	$\|0,0,0\rangle+i\|1,1,0\rangle$
A_{2}	$g_{a} t_{a, 2}=\pi /(2 \sqrt{2})$	$\|0,0,0\rangle+\|0,2,0\rangle$
$R_{a, 3}$	$\Omega t_{q a, 3}=\pi, \omega_{d}=\omega_{2}$	$\|0,0,0\rangle-i\|1,2,0\rangle$
A_{3}	$g_{a} t_{a, 3}=\pi /(2 \sqrt{3})$	$\|0,0,0\rangle-\|0,3,0\rangle$
$R_{b, 1}$	$\Omega t_{q b, 1}=\pi, \omega_{d}=\omega_{0}$	$-i\|1,0,0\rangle-\|0,3,0\rangle$
B_{1}	$g_{b} t_{b, 1}=\pi / 2$	$-\|0,0,1\rangle-\|0,3,0\rangle$
$R_{b, 2}$	$\Omega t_{q b, 2}=\pi, \omega_{d}=\omega_{-1}$	$i\|1,0,1\rangle-\|0,3,0\rangle$
B_{2}	$g_{b} t_{b, 2}=\pi /(2 \sqrt{2})$	$\|0,0,2\rangle-\|0,3,0\rangle$
$R_{b, 3}$	$\Omega t_{q b, 3}=\pi, \omega_{d}=\omega_{-2}$	$-i\|1,0,2\rangle-\|0,3,0\rangle$
B_{3}	$g_{b} t_{b, 3}=\pi /(2 \sqrt{3})$	$-\|0,0,3\rangle-\|0,3,0\rangle$

Programming Entanglement

Experimental Results

Martinis Group, UCSB

Decoherence for NOON States

- Superconducting resonators are super, but not perfect---they lose quanta to the environment in time 100-10000 ns $F \sim e^{-t / T_{q}} e^{-N t / T_{r}}$

Fidelity $=$ Probability of Success

FWS, Douglas Onyango '11, K Jacobs, and RW Simmonds, In preparation

Decoherence for NOON States

- Superconducting resonators are super, but not perfect---they lose quanta to the environment in time 100-10000 ns

$$
F \sim e^{-t / T} e^{-N t / T_{r}}
$$

Fidelity $=$ Probability of Success

FWS, Douglas Onyango '11, K Jacobs, and RW Simmonds, In preparation

Schrödinger Cats are hard to build!

Outline

- Superconducting Quantum Circuits
- LC oscillators + Qubits
- Entangled Qubits
- through Capacitors, Oscillators, + Resonators
- Entangled Resonators
- Resonator Networks, Quantum Machines and Beyond

Quantum Routing on Resonator

 Networks- Programmable: Any two nodes can communicate by programming the qubit frequencies in the network.
- Parallel: Multiple quantum states can be transferred at the same time.
- Efficient: Transfer time is independent of the distance between nodes!
- High Fidelity: $\mathrm{F}>90 \%$ possible using existin technology, modest dimensions!

Requires Study of Disorder and Decoherence
FWS and C.J. Williams,
Phys. Rev. B 78, 094516 (2008)

Chris Chudzicki and FWS, Phys. Rev. Lett. 105, 260501 (2010)

Quantum Routing on Resonator

Apker Finalists Moet in Washington

-

Photo by Shelly Johnstion
Each year, APS selects two recipienss of the Apker Awasd for outstanding research by an undergradiane. To determine ne redipients, a number of finalsts ase chosen, and then intervirwed by the selection commisee. This year, the seven fnalats met wit fe commines in Washington on September 3. They ave,
 (UC, Berkeley) Berjamin Good (Searthmost Colleges. Pariok Galoghar (Santord Universof). Wilian Thowe (MITL and Chistopher Chudzcki (Whiams College). The reopients wil be announced on the APS FI websine and in a lacrer issue of APS Nown

Phys. Kev. B 78, UY4516 (2UU8)

1

Quantum Machines?

BREAKTHROUGH Of THEYEARScience, Dec. 17, 2010

The First Quantum Machine

A humanmade object that moves in ways that can be described only b quantum mechanics might lead to tests of our notion of reality

LETTER

Martinis Group, UCSB

Sideband cooling of micromechanical motion to the quantum ground state
 \& R W. Wimmonds

Quantum Machines?

BREAKTHROUGH OF THEYEARSCience, Dec. 17, 2010
 The First Quantum Machine
 A humanmade object that moves in ways that can be described only b quantum mechanics might lead to tests of our notion of reality
 Martinis Group, UCSB

Sideband cooling of micromechanical motion to the quantum ground state

 \& 8. W. Simmonds ${ }^{1}$

PRL 107, 177204 (2011)
PHYSICAL REVIEW LETTERS

Ultraefficient Cooling of Resonators: Beating Sideband Cooling with Quantum Control
Xiaoting Wang. ${ }^{1.2}$ Sai Vinjanampathy. ${ }^{2}$ Frederick W. Strauch, ${ }^{3}$ and Kurt Jacobs ${ }^{2 / 4}$
${ }^{1}$ Departenent of Applied Marhematics \& Theoretical Phyaics, Uneversity of Cambridge, Cambridge, CB3 OWA, United Kingdom
${ }^{2}$ Department of Physics, University of Massachusetti at Boiton, Boston, Massachusetts O2125, USA
${ }^{3}$ Department of Physics, Wiltiams College, Withamstomn, Massachusetts 01267, USA
${ }^{\text {th}}$ Hearne Instifate for Thearetical Physics, Louisiana Srate University, Baton Roxge, Loaisiand 70803, USA (Received 28 March 2011; revised manuscript received 22 August 2011: published 19 October 2011)

Quantum Computing?

- $\mathrm{Q}:$ When will we have a quantum computer?

A: $|2020\rangle+|2030\rangle+|2040\rangle+|2050\rangle+\cdots$?

Thank you very much!

- Williams College
- Physics Department
- Jay Pasachoff + Sigma Xi
- Students, especially:
- Teng Jian Khoo '09
- Chris Chudzicki '10
- Steve Jackson '10
- Samyam Rajbhandari '11
- Douglas Onyango '11
- Hai Zhou '11
- Ben Athiwaratkun '12
- Qiao Zhang '13

Funding:
Research Corporation
National Science Foundation
Collaborators:
Kurt Jacobs Ray Simmonds
(UMass Boston)

