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Quantum Computing
Executive Summary
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Quantum Computing
Extended Abstract

Quantum Computer:       
A hypothetical device 
which uses the intrinsic 
weirdness of the 
universe (?multiverse?) 
to speed up 
computational tasks.

Quantum Algorithms:                  
Factoring, Search, Simulation (+ a few more)

Quantum Bit: A bit (binary digit) that can be in a 
superposition of both 0 and 1
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Phase Qubit

C Ib

|0!

|1!

|2!

|3!

Josephson Junction

"

100 µm

Artificial Atom, 
Controlled by Wires!

AC Circuits: 
Capacitor, Inductor + JJunction
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Tunable Oscillator

Sweep of  bias current allows experimental control of  energy levels.  
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Phase Qubit Spectroscopy

Isolation
Qubit

50 µm

Sudeep Dutta et al. (Univ. Maryland) 

Hypres Inc. 

I (µ A)

f  (GHz)

Each microwave transition is an excitation of  the junction with an 
increased tunneling rate.  Bright indicates a large number of  tunneling 

events, dark a small number of  events.

1 # 2

0 # 1

2 # 33 # 4

0 $ 21 $ 32 $ 4
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Coupling Qubits by Cavities

Qubit A

Qubit B

Resonator

“Coherent quantum state storage and transfer between two 
phase qubits via a resonant cavity”,  M. Sillanpaa, J. I. Park, and R. W. 

Simmonds, Nature 449, 438 (2007)

Thursday, March 17, 2011



Coupling Qubits by Cavities

Qubit A

Qubit B

Qubit
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Arbitrary Control of a 
Superconducting Resonator

• Martinis Group, UC Santa Barbara (2008)
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Superconducting Resonator
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Arbitrary Control of a 
Superconducting Resonator

• Martinis Group, UC Santa Barbara (2008)
Resonator

Qubit

Equations for Science Center Talk

Frederick W. Strauch

March 11, 2011

1 The first

|Ψ� = |0�+ |3�+ |6� (1)

i
dΨ

dt
= ωAΨ (2)

Ψ =

�
ψ1

ψ2

�
(3)

Apair =

�
0 1
1 0

�
(4)

exp(−iωApairt) =

�
cos(ωt) −i sin(ωt)

−i sin(ωt) cos(ωt)

�
(5)

exp(−iωAsquaret) =





c −is 0 0
−is c 0 0
0 0 c −is
0 0 −is c



×





c 0 −is 0
0 c 0 −is

−is 0 c 0
0 −is 0 c





(6)

Ψ =





ψ1

ψ2

ψ3

ψ4



 (7)

1
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Outline

• Superconducting Qubits and Resonators

• Quantum Routing on Networks 

• Perfect State Transfer on Hypercube 
Networks

• Parallel State Transfer and Efficient 
Quantum Routing

• Quantum Computing with 
Superconducting Resonators

Thursday, March 17, 2011



Quantum Networks
• Quantum computers require many qubits that can 

quickly communicate with each other.

• A possible solution is to couple qubits (or oscillators) 
as a hypercube network.  (each node represents a 
qubit, coupled to some other qubits)                                 

• These networks could be implemented using 
superconducting qubits!

d = 1
d = 2 d = 3 d = 4
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Quantum Routing: 
Schematic

  Q1

  Q2

  Q3

  Q4

  Q5

  Q6

  Q7

  Q8

Interconnection 
Network

Qubits Qubits
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Quantum Routing
• Goal: Use a network of elements (qubits or 

resonators) to transfer quantum information.

• Programmable---send information 
between any two nodes.

• Parallel---information between different 
pairs of nodes can be sent at the same time.

• Ideally suited for entanglement 
distribution between distinct registers for 
teleportation, error detection, ancilla 
preparation, and other steps toward fault 
tolerance.
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Entanglement⇒Teleportation
• Discovered by Bennett, Brassed, Crepeau, 

Jozsa, Peres, Wootters

• Very useful for quantum computers!

Very Unlikely
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Entanglement⇒Teleportation
• Discovered by Bennett, Brassed, Crepeau, 

Jozsa, Peres, Wootters

• Very useful for quantum computers!

Very Unlikely but who knows?
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Why Hypercubes?
• Transfer of a single quantum state is governed 

by a matrix differential equation:

• ! is a frequency 

• A is the adjacency matrix                             
of the network (graph)  

• Ajk = 1 if nodes j and k are connected

• Ajk = 0 if nodes j and k are not connected  

• Two nodes:                                            
(pair):

1 2

Equations for Science Center Talk

Frederick W. Strauch

March 9, 2011

1 The first

ı
dΨ

dt
= ΩAΨ (1)

Apair =

�
0 1
1 0

�
(2)

Apair =





0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



 =

�
Apair I2
I2 Apair

�
(3)

Acube =





0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0





=

�
Asquare I4
I4 Asquare

�
. (4)

1
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Quantum State Transfer
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March 9, 2011

1 The first

i
dΨ

dt
= ΩAΨ (1)

Ψ =

�
ψ1

ψ2

�
(2)

Apair =

�
0 1
1 0

�
(3)

Ψ =





ψ1

ψ2

ψ3

ψ4



 (4)

Asquare =





0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



 =

�
Apair I2
I2 Apair

�
(5)

Ψ =





ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8





(6)

1

Equations for Science Center Talk

Frederick W. Strauch

March 11, 2011

1 The first

|Ψ� = |0�+ |3�+ |6� (1)

i
dΨ

dt
= ωAΨ (2)

Ψ =

�
ψ1

ψ2

�
(3)

Ψ(t) = exp(−iωApairt)Ψ(0) (4)

Apair =

�
0 1
1 0

�
(5)

exp(−iωApairt) =

�
cos(ωt) −i sin(ωt)

−i sin(ωt) cos(ωt)

�
(6)

exp(−iωAsquaret) =





c −is 0 0
−is c 0 0
0 0 c −is
0 0 −is c



×





c 0 −is 0
0 c 0 −is

−is 0 c 0
0 −is 0 c





(7)

Ψ =





ψ1

ψ2

ψ3

ψ4



 (8)

1

Equations for Science Center Talk

Frederick W. Strauch

March 11, 2011

1 The first

|Ψ� = |0�+ |3�+ |6� (1)

i
dΨ

dt
= ωAΨ (2)

Ψ =

�
ψ1

ψ2

�
(3)

Ψ(t) = exp(−iωApairt)Ψ(0) (4)

s = sin(ωt) c = cos(ωt) (5)

Apair =

�
0 1
1 0

�
(6)

exp(−iωApairt) =

�
cos(ωt) −i sin(ωt)

−i sin(ωt) cos(ωt)

�
(7)

exp(−iωAsquaret) =





c −is 0 0
−is c 0 0
0 0 c −is
0 0 −is c



×





c 0 −is 0
0 c 0 −is

−is 0 c 0
0 −is 0 c





(8)

1
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Frederick W. Strauch

March 9, 2011

1 The first

i
dΨ

dt
= ΩAΨ (1)

Ψ =

�
ψ1

ψ2

�
(2)

Apair =

�
0 1
1 0

�
(3)

Ψ =





ψ1

ψ2

ψ3

ψ4



 (4)

Asquare =





0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



 =

�
Apair I2
I2 Apair

�
(5)

Ψ =





ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8





(6)

1

Ψ =





ψ1

ψ2

ψ3

ψ4



 (9)

Asquare =





0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



 =

�
Apair I2
I2 Apair

�
(10)

Ψ =





ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8





(11)

Acube =





0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0





=

�
Asquare I4
I4 Asquare

�
. (12)

τ1 =





0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0





, (13)

2

τ2 =





0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0





, (14)

and

τ3 =





0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





. (15)

exp(−iωAcubet) = (16)





c 0 0 0 −is 0 0 0
0 c 0 0 0 −is 0 0
0 0 c 0 0 0 −is 0
0 0 0 c 0 0 0 −is

−is 0 0 0 c 0 0 0
0 −is 0 0 0 c 0 0
0 0 −is 0 0 0 c 0
0 0 0 −is 0 0 0 c





, (17)





c 0 −is 0 0 0 0 0
0 c 0 −is 0 0 0 0

−is 0 c 0 0 0 0 0
0 −is 0 c 0 0 0 0
0 0 0 0 c 0 −is 0
0 0 0 0 0 c 0 −is
0 0 0 0 −is 0 c 0
0 0 0 0 0 −is 0 c





, (18)

3





c −is 0 0 0 0 0 0
−is c 0 0 0 0 0 0
0 0 c −is 0 0 0 0
0 0 −is c 0 0 0 0
0 0 0 0 c −is 0 0
0 0 0 0 −is c 0 0
0 0 0 0 0 0 c −is
0 0 0 0 0 0 −is c





. (19)

4

τ2 =





0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0





, (14)

and

τ3 =





0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





. (15)

exp(−iωAcubet) = (16)





c 0 0 0 −is 0 0 0
0 c 0 0 0 −is 0 0
0 0 c 0 0 0 −is 0
0 0 0 c 0 0 0 −is

−is 0 0 0 c 0 0 0
0 −is 0 0 0 c 0 0
0 0 −is 0 0 0 c 0
0 0 0 −is 0 0 0 c





, (17)





c 0 −is 0 0 0 0 0
0 c 0 −is 0 0 0 0

−is 0 c 0 0 0 0 0
0 −is 0 c 0 0 0 0
0 0 0 0 c 0 −is 0
0 0 0 0 0 c 0 −is
0 0 0 0 −is 0 c 0
0 0 0 0 0 −is 0 c





, (18)

3

τ2 =





0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0





, (14)

and

τ3 =





0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





. (15)

exp(−iωAcubet) = (16)





c 0 0 0 −is 0 0 0
0 c 0 0 0 −is 0 0
0 0 c 0 0 0 −is 0
0 0 0 c 0 0 0 −is

−is 0 0 0 c 0 0 0
0 −is 0 0 0 c 0 0
0 0 −is 0 0 0 c 0
0 0 0 −is 0 0 0 c





, (17)





c 0 −is 0 0 0 0 0
0 c 0 −is 0 0 0 0

−is 0 c 0 0 0 0 0
0 −is 0 c 0 0 0 0
0 0 0 0 c 0 −is 0
0 0 0 0 0 c 0 −is
0 0 0 0 −is 0 c 0
0 0 0 0 0 −is 0 c





, (18)

3
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March 9, 2011

1 The first

i
dΨ

dt
= ΩAΨ (1)

Ψ =

�
ψ1

ψ2

�
(2)

Apair =

�
0 1
1 0

�
(3)

Ψ =





ψ1

ψ2

ψ3

ψ4



 (4)

Asquare =





0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



 =

�
Apair I2
I2 Apair

�
(5)

Ψ =





ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8





(6)

1

Ψ =





ψ1

ψ2

ψ3

ψ4



 (9)

Asquare =





0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



 =

�
Apair I2
I2 Apair

�
(10)

Ψ =





ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8





(11)

Acube =





0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0





=

�
Asquare I4
I4 Asquare

�
. (12)

τ1 =





0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0





, (13)

2

τ2 =





0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0





, (14)

and

τ3 =





0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





. (15)

exp(−iωAcubet) = (16)





c 0 0 0 −is 0 0 0
0 c 0 0 0 −is 0 0
0 0 c 0 0 0 −is 0
0 0 0 c 0 0 0 −is

−is 0 0 0 c 0 0 0
0 −is 0 0 0 c 0 0
0 0 −is 0 0 0 c 0
0 0 0 −is 0 0 0 c





, (17)





c 0 −is 0 0 0 0 0
0 c 0 −is 0 0 0 0

−is 0 c 0 0 0 0 0
0 −is 0 c 0 0 0 0
0 0 0 0 c 0 −is 0
0 0 0 0 0 c 0 −is
0 0 0 0 −is 0 c 0
0 0 0 0 0 −is 0 c





, (18)

3





c −is 0 0 0 0 0 0
−is c 0 0 0 0 0 0
0 0 c −is 0 0 0 0
0 0 −is c 0 0 0 0
0 0 0 0 c −is 0 0
0 0 0 0 −is c 0 0
0 0 0 0 0 0 c −is
0 0 0 0 0 0 −is c





. (19)

4

τ2 =





0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0





, (14)

and

τ3 =





0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





. (15)

exp(−iωAcubet) = (16)





c 0 0 0 −is 0 0 0
0 c 0 0 0 −is 0 0
0 0 c 0 0 0 −is 0
0 0 0 c 0 0 0 −is

−is 0 0 0 c 0 0 0
0 −is 0 0 0 c 0 0
0 0 −is 0 0 0 c 0
0 0 0 −is 0 0 0 c





, (17)





c 0 −is 0 0 0 0 0
0 c 0 −is 0 0 0 0

−is 0 c 0 0 0 0 0
0 −is 0 c 0 0 0 0
0 0 0 0 c 0 −is 0
0 0 0 0 0 c 0 −is
0 0 0 0 −is 0 c 0
0 0 0 0 0 −is 0 c





, (18)

3

τ2 =





0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0





, (14)

and

τ3 =





0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





. (15)

exp(−iωAcubet) = (16)





c 0 0 0 −is 0 0 0
0 c 0 0 0 −is 0 0
0 0 c 0 0 0 −is 0
0 0 0 c 0 0 0 −is

−is 0 0 0 c 0 0 0
0 −is 0 0 0 c 0 0
0 0 −is 0 0 0 c 0
0 0 0 −is 0 0 0 c





, (17)





c 0 −is 0 0 0 0 0
0 c 0 −is 0 0 0 0

−is 0 c 0 0 0 0 0
0 −is 0 c 0 0 0 0
0 0 0 0 c 0 −is 0
0 0 0 0 0 c 0 −is
0 0 0 0 −is 0 c 0
0 0 0 0 0 −is 0 c





, (18)

3
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1 The first

i
dΨ

dt
= ΩAΨ (1)

Ψ =

�
ψ1

ψ2

�
(2)

Apair =

�
0 1
1 0

�
(3)

Ψ =





ψ1

ψ2

ψ3

ψ4



 (4)

Asquare =





0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



 =

�
Apair I2
I2 Apair

�
(5)

Ψ =





ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8





(6)

1

Ψ =





ψ1

ψ2

ψ3
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
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“Simple” matrices for each direction!
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1 The first

i
dΨ

dt
= ΩAΨ (1)

Ψ =

�
ψ1

ψ2

�
(2)

Apair =

�
0 1
1 0

�
(3)

Ψ =





ψ1

ψ2

ψ3

ψ4



 (4)

Asquare =





0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



 =

�
Apair I2
I2 Apair

�
(5)

Ψ =





ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8





(6)

1

Ψ =





ψ1

ψ2

ψ3

ψ4



 (9)

Asquare =





0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



 =

�
Apair I2
I2 Apair

�
(10)

Ψ =





ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8





(11)

Acube =





0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0





=

�
Asquare I4
I4 Asquare

�
. (12)

τ1 =





0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0





, (13)

2

τ2 =





0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0





, (14)

and

τ3 =





0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





. (15)

exp(−iωAcubet) = (16)





c 0 0 0 −is 0 0 0
0 c 0 0 0 −is 0 0
0 0 c 0 0 0 −is 0
0 0 0 c 0 0 0 −is

−is 0 0 0 c 0 0 0
0 −is 0 0 0 c 0 0
0 0 −is 0 0 0 c 0
0 0 0 −is 0 0 0 c





, (17)





c 0 −is 0 0 0 0 0
0 c 0 −is 0 0 0 0

−is 0 c 0 0 0 0 0
0 −is 0 c 0 0 0 0
0 0 0 0 c 0 −is 0
0 0 0 0 0 c 0 −is
0 0 0 0 −is 0 c 0
0 0 0 0 0 −is 0 c





, (18)

3





c −is 0 0 0 0 0 0
−is c 0 0 0 0 0 0
0 0 c −is 0 0 0 0
0 0 −is c 0 0 0 0
0 0 0 0 c −is 0 0
0 0 0 0 −is c 0 0
0 0 0 0 0 0 c −is
0 0 0 0 0 0 −is c





. (19)

4

τ2 =





0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0





, (14)

and

τ3 =





0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





. (15)

exp(−iωAcubet) = (16)





c 0 0 0 −is 0 0 0
0 c 0 0 0 −is 0 0
0 0 c 0 0 0 −is 0
0 0 0 c 0 0 0 −is

−is 0 0 0 c 0 0 0
0 −is 0 0 0 c 0 0
0 0 −is 0 0 0 c 0
0 0 0 −is 0 0 0 c





, (17)





c 0 −is 0 0 0 0 0
0 c 0 −is 0 0 0 0

−is 0 c 0 0 0 0 0
0 −is 0 c 0 0 0 0
0 0 0 0 c 0 −is 0
0 0 0 0 0 c 0 −is
0 0 0 0 −is 0 c 0
0 0 0 0 0 −is 0 c





, (18)

3

τ2 =





0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0





, (14)

and

τ3 =





0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





. (15)

exp(−iωAcubet) = (16)





c 0 0 0 −is 0 0 0
0 c 0 0 0 −is 0 0
0 0 c 0 0 0 −is 0
0 0 0 c 0 0 0 −is

−is 0 0 0 c 0 0 0
0 −is 0 0 0 c 0 0
0 0 −is 0 0 0 c 0
0 0 0 −is 0 0 0 c





, (17)





c 0 −is 0 0 0 0 0
0 c 0 −is 0 0 0 0

−is 0 c 0 0 0 0 0
0 −is 0 c 0 0 0 0
0 0 0 0 c 0 −is 0
0 0 0 0 0 c 0 −is
0 0 0 0 −is 0 c 0
0 0 0 0 0 −is 0 c





, (18)

3

“Simple” matrices for each direction!
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• Each node represents a qubit.  Quantum states travel 
along all paths simultaneously in superposition 
with full constructive interference, yielding 
perfect state transfer.

Hypercube State Transfer
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• Each node represents a qubit.  Quantum states travel 
along all paths simultaneously in superposition 
with full constructive interference, yielding 
perfect state transfer.
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Exact Calculation

Ψ = |Ψ|eiθ Size of Sphere ~ |Ψ|
Orientation of Sphere ~ θ 

with Qiao Zhang ’13

Thursday, March 17, 2011



Parallel State Transfer
• Transmit multiple quantum states at the 

same time!

• Use Oscillator Networks:                         
Each node has an infinite number of states!

• Calculation not as simple, but still 
exactly solvable.

|&1! 

|&2!

|&2! |&1! 
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Phase Qubit Cube

• Circuits do not need to be 
simple two-dimensional layouts.  

• Multi-layer interconnects 
allow many crossovers and 

complex couplings.

1 2 3
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Phase Qubit Cube

• Circuits do not need to be 
simple two-dimensional layouts.  

• Multi-layer interconnects 
allow many crossovers and 

complex couplings.

Courtesy Ray Simmonds, NIST Boulder

1 2 3
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Outline

• Superconducting Qubits and Resonators

• Quantum Routing on Networks 

• Perfect State Transfer on Hypercube 
Networks

• Parallel State Transfer and Efficient 
Quantum Routing

• Quantum Computing with 
Superconducting Resonators
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Chris Chudzicki’s Senior Thesis
• Study tunable resonators: exactly 

solvable!

• Split cube into M subcubes by 
resonator frequencies.                 
(Matrices are still simple!)

• Send quantum states in parallel.

M = 1 M = 2 M = 4

Thursday, March 17, 2011



Parallel Transfer Fidelity

Text

M = # of parallel “messages”

! = 2!0 /""

!0

M = 2

Fidelity = Probability of successfully   
 transmitting a quantum state

Detuning parameter
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Efficient Quantum Routing

• Goal = Distribute entanglement between every pair of nodes 
(N = 2d total nodes for a hypercube network)

• Use parallel state transfer, sending states on each subcube

• Tune oscillators in a fixed frequency range (finite bandwidth) 

• Qubit-Compatible Scheme = one state on each subcube

• Massively Parallel Scheme = multiple states on each 
subcube 

• Efficiency = Entanglement Distrubution Rate

Method to Characterize the Efficiency of Quantum Routing by 
Parallel State Transfer
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Qubit-Compatible Scheme

One state per 
subcube

N = 2d nodes total

Rate scales as:

TðQCÞ
D ¼ T

Xd$1

m¼0

!
d

m

"
2d$m$1 ¼ 1

2
ð3d $ 1ÞT: (12)

Using Eq. (8) with sin2!T ¼ 1, the sum in Eq. (10) can be
performed analytically, from which we find, for large d,

RðQCÞ % 1

T
N0:415

!
1$ 3

4

!2
0

ð!max$!minÞ2
d2ðdþ 3Þ

"
; (13)

where N ¼ 2d and the prefactor is ð4=3Þd ¼ Nlog2ð4=3Þ.
For the massively parallel scheme, every antipodal pair

transfers simultaneously in time T, giving

TðMPÞ
D ¼ T

Xd$1

m¼0

!
d

m

"
¼ ð2d $ 1ÞT; (14)

with a rate

R ðMPÞ % 1

T
N
!
1$ 3

4

!2
0

ð!max $!minÞ2
d2ðdþ 3Þ

"
: (15)

These rates are conservative estimates; higher fidelity
transfer is possibly by exploiting the resonances seen in
Fig. 2.

These three distribution rates are plotted as a function of
the number of nodes in Fig. 3, where we have fixed the
bandwidth appropriate to recent experiments [2]. For the
hypercube schemes, the MP protocol is more than quad-
ratically better than the QC scheme. Entanglement transfer
on the complete graph quickly fails due to significant cross
talk for N % 20; Eq. (9) shows that this is due to the finite
bandwidth of the network. It is clear that studying extended
coupling schemes such as the cavity grid [4] is an impor-
tant task.

Decoherence and disorder for the hypercube.—
Experimental issues related to hypercube state transfer,
including decoherence and disorder, have been analyzed
previously [3]. These results can be applied directly to
the QC scheme. Decoherence will simply reduce the fidel-
ity (and R) by a factor 'e$T=T2 for arbitrarily large

subcubes [3], where T2 is the total dephasing time. For
the MP case, we can exactly evaluate [14] the effect of
dissipation, the dominant source of decoherence for super-
conducting oscillators [16]. For this decoherence process,
the fidelity (and R) will is reduced by a factor 'e$T=T1 ,
where T1 is the dissipation time.
In conclusion, we have analyzed how entanglement can

be routed in hypercube and completely connected networks.
This has been accomplished by parallel state transfer and
analytical calculations of the entanglement distribution rate.
In the ideal case, oscillators on both the hypercube and
complete graphs achieve optimal efficiency. This efficiency
is robust for the hypercube in the presence of finite band-
width and dissipation. These results provide further evi-
dence that superconducting resonators are an important
element for quantum information processing, and motivate
further study of parallelism in quantum networks.
We gratefully acknowledge discussions with W.
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function of the number of nodes N for three distribution
schemes: the massively parallel (MP) and qubit-compatible
schemes on the hypercube of dimension d (each with N ¼ 2d),
and the complete graph of size N. Each network was chosen to to
have a coupling of !0=2" ¼ 20 MHz with a bandwidth
ð!max $!minÞ=2" ¼ 2 GHz.
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Massively Parallel Scheme

Multiple states per 
subcube

N = 2d nodes total

Rate scales as:

TðQCÞ
D ¼ T

Xd$1

m¼0

!
d

m

"
2d$m$1 ¼ 1

2
ð3d $ 1ÞT: (12)

Using Eq. (8) with sin2!T ¼ 1, the sum in Eq. (10) can be
performed analytically, from which we find, for large d,

RðQCÞ % 1

T
N0:415

!
1$ 3

4

!2
0

ð!max$!minÞ2
d2ðdþ 3Þ

"
; (13)

where N ¼ 2d and the prefactor is ð4=3Þd ¼ Nlog2ð4=3Þ.
For the massively parallel scheme, every antipodal pair

transfers simultaneously in time T, giving

TðMPÞ
D ¼ T

Xd$1

m¼0

!
d

m

"
¼ ð2d $ 1ÞT; (14)

with a rate

R ðMPÞ % 1

T
N
!
1$ 3

4

!2
0

ð!max $!minÞ2
d2ðdþ 3Þ

"
: (15)

These rates are conservative estimates; higher fidelity
transfer is possibly by exploiting the resonances seen in
Fig. 2.

These three distribution rates are plotted as a function of
the number of nodes in Fig. 3, where we have fixed the
bandwidth appropriate to recent experiments [2]. For the
hypercube schemes, the MP protocol is more than quad-
ratically better than the QC scheme. Entanglement transfer
on the complete graph quickly fails due to significant cross
talk for N % 20; Eq. (9) shows that this is due to the finite
bandwidth of the network. It is clear that studying extended
coupling schemes such as the cavity grid [4] is an impor-
tant task.

Decoherence and disorder for the hypercube.—
Experimental issues related to hypercube state transfer,
including decoherence and disorder, have been analyzed
previously [3]. These results can be applied directly to
the QC scheme. Decoherence will simply reduce the fidel-
ity (and R) by a factor 'e$T=T2 for arbitrarily large

subcubes [3], where T2 is the total dephasing time. For
the MP case, we can exactly evaluate [14] the effect of
dissipation, the dominant source of decoherence for super-
conducting oscillators [16]. For this decoherence process,
the fidelity (and R) will is reduced by a factor 'e$T=T1 ,
where T1 is the dissipation time.
In conclusion, we have analyzed how entanglement can

be routed in hypercube and completely connected networks.
This has been accomplished by parallel state transfer and
analytical calculations of the entanglement distribution rate.
In the ideal case, oscillators on both the hypercube and
complete graphs achieve optimal efficiency. This efficiency
is robust for the hypercube in the presence of finite band-
width and dissipation. These results provide further evi-
dence that superconducting resonators are an important
element for quantum information processing, and motivate
further study of parallelism in quantum networks.
We gratefully acknowledge discussions with W.

Wootters, L. Bishop, K. Jacobs, D. Schuster, and R.W.
Simmonds. This work was supported by the Research
Corporation for Science Advancement, and CC by NSF
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ð!max $!minÞ=2" ¼ 2 GHz.

PRL 105, 260501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

260501-4

Thursday, March 17, 2011



Massively Parallel Distribution

• Send oscillators’ states between all corners 
simultaneously!

• Genuine Quantum Property! 

• Excitations are noninteracting bosons: 
multiple photons just pass through each other.
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Massively Parallel Rate

Various Bandwidths

Entanglement Distribution using Oscillator 
Networks is both optimally efficient and robust!
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• Superconducting Qubits and Resonators

• Quantum Routing on Networks 

• Perfect State Transfer on Hypercube 
Networks

• Parallel State Transfer and Efficient 
Quantum Routing

• Quantum Computing with 
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Beyond State Transfer
• Superconducting resonators could be used for 

quantum logic.

• Instead of qubits, these would be qudits (digits with 
arbitrary base)

• Resonators are significantly easier to fabricate and of 
higher quality than qubits!

• Results so far:

• Entangling Two Superconducting Resonators

• Using Resonator as Multi-qubit Memory

• Quantum Logic Using Resonator States
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Quantum Algorithm to generate highly 
non-classical “NOON” states:
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Experimental Results

synthetic ensemble comprising a 50% population of j10i
states and 50% j01i states [26]. Coincidence measurements
[Fig. 3] of this synthetic mixed state generate outcomes
identical to those of the N ¼ 1 NOON state.

A more complete resonator measurement, that can re-
solve entangled from mixed states, uses bipartite Wigner
tomography, a significant extension of single resonator
tomography [9,13,14]. This involves injecting a coherent
Gaussian microwave pulse into each of the storage reso-
nators, with controlled amplitude and phase, displacing the
resonator states in phase space. The resonators are then
simultaneously measured with a joint probability measure-
ment, now as a function of the amplitude and phase of the
coherent pulses. From the complete set of measurements,
the two-resonator density matrix can be calculated [26].

In Fig. 4 we display the amplitudes of the density
matrices measured for resonator NOON states up to
N ¼ 3, as well as for the mixed state. While there are
nonidealities, the desired nonzero matrix elements are
clearly apparent for the NOON states, while for the mixed
state, the density matrix has only zero-valued off-diagonal
elements. The state preparation fidelities, F ¼ hc j!jc i,
are found to be 0:76" 0:02 (N ¼ 1), 0:50" 0:02 (N ¼ 2),
and 0:33" 0:02 (N ¼ 3). For N ¼ 1, the most probable
entanglement of formation (EOF) [29] is EOF ¼ 0:51,
while for N ¼ 2 and N ¼ 3, EOF ¼ 0:31 and 0.28, respec-
tively; for the mixed state, the EOF is zero. We also
calculate the negativity Neð!Þ ¼

P
j maxð0;"jÞ, where

"j are the eigenvalues of the partial transpose !PT of the
density matrix [22,30], and Neð!Þ> 0 indicates entangle-
ment. The negativities are found to be 0:56" 0:03
(N ¼ 1), 0:32" 0:03 (N ¼ 2), and 0:27" 0:01 (N ¼ 3);
for the mixed state we find zero with an upper bound of
0.001. The decrease of these values with photon number

N is compatible with expectations: The state preparation
requires phase coherence of the four-element entangled
states for most of the preparation sequence, which is
limited by the qubit coherence time T2 [26]. Other than
this technical limitation, the deterministic generation is
completely scalable to large N.
A hallmark of NOON states is their rapid phase evolu-

tion [20,21,23,24], which can be verified by Wigner to-
mography using two distinct methods. For the N ¼ 1 state,
after entangling the qubits in a Bell state, we wait for a
variable time and then swap the state into the storage
resonators. The density matrices measured at three differ-
ent delay times are shown in Fig. 5(a). The phases of the
off-diagonal elements rotate with time due to the qubit-
resonator frequency difference, as in Fig. 5(b), showing the
expected linear dependence.
This phase-measurement method suffers from the short

qubit dephasing time. A second method is to change the
phase reference for the coherent pulses used in the Wigner
tomography, avoiding storage of the state in the qubit. We
add an additional phase to the pulses applied to resonator A
only. The resulting density matrices show the expected
rotation of the off-diagonal elements. In Fig. 5(c) we plot
the off-diagonal phase angle for differentN; theN ¼ 3 state
evolves 3 times faster than the N ¼ 1 state, as expected.
We also used tomography to measure the NOON state

decay [26]. We find that the off-diagonal elements decrease
at approximately the same rate as the diagonal elements,
with a decay time #D % 3 "s, consistent with environmen-
tal fluctuations that are uncorrelated in time [14] and to a
limited degree in space, the latter supported by the absence
of correlation between the two resonators. In essence, we
have performed a two-point sample of the noise correlation
in space.
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FIG. 4 (color online). NOON and mixed state density matrix amplitudes, reconstructed in the photon-number basis from bipartite
Wigner tomography; states are labeled jmni where m is the photon number in resonator A and n that in B. Bar heights and colors
represent matrix element amplitudes. The dominant amplitudes for all three NOON states are in the expected locations, although the
off-diagonal elements decrease with N, due to the finite qubit dephasing time. Errors for the density matrix elements are not shown but
are small [26].
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Quantum entanglement, one of the defining features of quantum mechanics, has been demonstrated in a

variety of nonlinear spinlike systems. Quantum entanglement in linear systems has proven significantly

more challenging, as the intrinsic energy level degeneracy associated with linearity makes quantum

control more difficult. Here we demonstrate the quantum entanglement of photon states in two

independent linear microwave resonators, creating N-photon NOON states (entangled states jN0iþ
j0Ni) as a benchmark demonstration. We use a superconducting quantum circuit that includes Josephson

qubits to control and measure the two resonators, and we completely characterize the entangled states with

bipartite Wigner tomography. These results demonstrate a significant advance in the quantum control of

linear resonators in superconducting circuits.

DOI: 10.1103/PhysRevLett.106.060401 PACS numbers: 03.65.Yz, 03.67.Lx, 85.25.Cp

Quantum superposition and entanglement have been
demonstrated experimentally using spinlike physical sys-
tems ranging from atoms to electronic circuits [1–7]. These
systems all display strong nonlinearity, and are used be-
cause this nonlinearity allows straightforward quantum
control by classical means. The quantum control of linear
systems, exemplified by the harmonic oscillator, is by
contrast more difficult, and has only been achieved using
nonlinear intermediaries: Atoms [1,8] to control optical
cavities, ions to control ion motion [9,10], and supercon-
ducting qubits to control photons in microwave resonators
[11–14]. Quantum entanglement of cavity photons still
presents a significant challenge: Experiments have demon-
strated maximally entangled photons in different polariza-
tion modes of the same cavity [15] and in free space [16],
but the entanglement of photons in two physically distinct
cavities [17–19] has proven more elusive.

Here we show the deterministic generation of entangled
photon states in two spatially separated microwave reso-
nators, achieved by manipulating the photon states with a
pair of superconducting phase qubits. We use as a bench-
mark the generation of NOON states [20–24], comprising a
total of N photons in the two resonators (A and B), en-
tangled in the quantum state

jc i ¼ 1ffiffiffi
2

p ðjNiAj0iB þ j0iAjNiBÞ; (1)

with N photons in resonator A and zero in B, superposed
with the state with the occupation numbers reversed. Such
a state has the same degree of entanglement as the Bell
state, but with N excitations. We also generate MOON
states, in which, e.g., resonator A has M or zero quanta,
entangled with resonator Bwith zero orN quanta. We fully
characterize the two-resonator photon states using bipartite

Wigner tomography, which represents a nontrivial exten-
sion of single-cavity Wigner tomography [1,9,12–14], and
allows us to distinguish entanglement from an incoherent
ensemble.
To accomplish this goal, we developed a new quantum

circuit comprising two superconducting phase qubits [25]
and three microwave resonators. A sketch of the circuit
topology is shown in Fig. 1(a). The circuit includes a
coupling resonator C, connected to both qubits, and two
state storage resonators A and B, each coupled to one qubit.
The resonator frequencies are all different, which allows us
to frequency select the qubit-resonator interactions. More
detailed information regarding the device design, fabrica-
tion and experimental setup can be found elsewhere
[12–14,26].
The basic method for generating two-resonator en-

tangled states, illustrated in Fig. 2, is to excite and then
entangle the two qubits using the coupling resonator. We
can swap the resulting Bell state jegiþ jgei to the two
storage resonators, creating an N ¼ 1 NOON state j10iþ
j01i. If we want to generate higher N photon states, we
instead selectively excite each qubit to its next higher
energy level jfi [Fig. 1(b)], generating the state jfgiþ
jgfi, thus using the qubits as ‘‘qutrits’’ [27,28]. The re-
quired microwave excitation is selective, due to the anhar-
monicity of the qubits. The qubit excitation is then
swapped to each storage resonator through the qubit jfi $
jei transition, creating a four-fold entangled state jeg10iþ
jge01i, where the first two letters indicate the qubit states,
and the second two numbers the storage resonator states.
We then reexcite the qubits to their jfi states, and again
swap the excitation to the resonators, generating jeg20iþ
jge02i. This process can be repeated until the entangled
state has N % 1 photons. In the final step, each qubit’s
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MATERIALS AND METHODS

The device fabrication is similar to that published pre-
viously [1]. The half-wavelength superconducting copla-
nar waveguide resonators are made of rhenium deposited
on a c-axis single-crystal sapphire substrate, with a 5 µm-
wide center signal trace and 10 µm gaps to the ground
plane metallization on either side of the center trace. We
place a single lithographed shorting strap connecting the
two ground planes at the midpoint of each resonator to
improve the quality of the grounding. This point is a volt-
age node for the fundamental half-wave resonant mode,
so that there is minimal additional dielectric loss from
the shorting strap’s underlying amorphous Si insulating
film [2].

In the circuit layout (image in Fig. S1), the coupling
resonator C is designed to have a higher resonance fre-
quency than the two state storage resonators A and B.
This prevents the qubit frequencies from having to cross
the C resonator frequency during NOON state ampli-
fication. The two storage resonators A and B are de-
signed with slightly different resonance frequencies, to
avoid possible interference between the resonators. The
full frequency span in the design was chosen to be close
to 550 MHz, within the dynamic range of our custom
microwave electronics.

The two superconducting phase qubits and coplanar
waveguide resonators are fabricated together, using our
standard multi-layer process [3]. The phase qubit con-
sists of a 2 µm2 Al/AlOx/Al junction in parallel with a
1 pF Al/a-Si:H/Al shunt capacitor and a 720 pH induc-
tance loop (design values) [4]. The critical current of the
Al/AlOx/Al junction is approximately 2µA. We use in-
terdigitated coupling capacitors between the qubits and
the resonators, designed to each have a capacitance of
1.9 fF. The actual coupling strengths vary slightly with
resonator frequency; the detailed component parameters
are listed in Table S1.

Devices were cooled down in a dilution refrigerator
with a base temperature of about 20 mK, giving neg-
ligible thermal excitation in relation to the qubit and
resonator operation frequencies; thus the qubits and res-
onators relax to their quantum ground states. Signal

FIG. S1: (Color online) Optical micrograph shows three
half-wavelength coplanar resonators A, B and C (sinusoidal
traces) and two qubits q0 and q1. The coupling resonator
C is between the two qubits, and the photon-state storage
resonators A and B are on either end of the circuit. The res-
onators are 8 to 9 mm long, yielding 6 to 7 GHz resonance
frequencies (see Table S1 for exact values). The center-to-
center distance between the storage resonators is ∼ 2 mm.

lines are heavily filtered with either microwave attenu-
ators (for microwave and high frequency pulse lines) or
resistor-capacitor low-pass filters and copper-powder mi-
crowave filters (for low-frequency signal lines) [3]. A cus-
tom microwave arbitrary waveform generator was used
to generate pulses with sub-nanosecond resolution for the
pulse envelopes [5], which are essential for optimal qubit
control.

GENERATION SEQUENCE TUNE-UP

The time required for each qubit-resonator i-SWAP
is calibrated separately. The swap times obtained from
these calibrations scale correctly as

√
n with the number

of photons n in the resonator [5] and also depend on the
state of the qubit. Examples of the swap calibrations for
a one-photon swap between qubit q0 and resonator A are
shown in Fig. S2, for both the |g〉 ↔ |e〉 and |e〉 ↔ |f〉
transitions. The swap time for the |e〉 ↔ |f〉 transition is
approximately 1/

√
2 times that for the |g〉 ↔ |e〉 transi-

tion. This scaling is as expected, as the multi-level phase
qubit can be well-approximated as a weakly nonlinear

• Martinis Group, UC Santa Barbara
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Multi-Qubit Memory
FWS and K Jacobs, in preparation 2

FIG. 1. A diagram of the coherent feedback circuit for loading

a register of two qubits into a nano-resonator. The key gives

the meaning of the lines that connect the qubits together, to

the resonator, and to external control gates. How the circuit

works is described in the text.

used to make the respective transfers one at a time.
The circuit works as follows. First the state of the n-

qubit quantum register is transferred to a set of N = 2n

qubits (these are the qubits labelled by Ai in Fig. 1). We
will call this set of qubits the “A”-qubits. The mapping is
chosen so that each of the states of the register is encoded
in a state of the A-qubits in which only one of the qubits
is in its excited state. Let us denote the joint state of the
A-qubits, in which only the k

th qubit is excited as |k�A.
The initial state of the A-qubit set, to be loaded into the
resonator, is then

|ψ�A =
N−1�

k=0

ck|k�A, (1)

where the coefficients cn are the coefficients that describe
the state of the register.

Each of the A-qubits is coupled to one of a set of “B”-
qubits (the qubits labelled by Bi in Fig. [? ]), via the

interaction σ(i)
z,Aσ

(i)
z,B. Here we denote the σz operator for

the i
th qubit of set A (respectively B) as σ(i)

z,A (respec-

tively σ(i)
z,B). The full interaction Hamiltonian between

the a and b sets is thus

Hab =
N�

i=1

σ(i)
z,Aσ

(i)
z,B. (2)

This interaction will allow the A-qubits to control the
interactions between each of the B-qubits and the res-
onator. In particular, they can control whether or not
the B qubits transfer phonons to the resonator.

The interaction between the B-qubits and the res-
onator is the rotating-wave “Jaynes-Cummings” interac-
tion given by

HAB =
N�

i=1

aσ(i)
+,B + a

†σ(i)
−,B. (3)

This interaction is obtained by coupling each qubit to
the resonator via the Hamiltonian σxx, where x is the
resonator position, and modulating the strength of this
coupling at the difference frequency between the qubit
and resonator. One then makes the rotating-wave ap-
proximation, which requires that the coupling rate must
be much smaller than the frequency of the resonator.
The Jaynes-Cummings interaction allows each of the

B qubits to transfer phonons to the resonator. Specifi-
cally, we turn on each of these interactions for a speci-
fied time, and concurrently drive the qubits, so that the
n
th B-qubit loads exactly n phonons into the resonator.

The key is that this process is switched off and on by
the A-qubits. The transfer will only take place if the
B-qubits are on-resonance with the resonator (via the
frequency-conversion coupling). By virtue of the interac-
tion between the A and B qubits, each A qubit will shift
its respective B qubit off-resonance if the A-qubit is in
its excited state. If a B-qubit is off-resonance it will re-
main in its ground state. For each loading operation, we
also chose the driving of the B-qubits so that they finish
the process in their ground states. They therefore finish
the loading step in their initial (ground) states, and are
uncorrelated with any of the other systems.
The result of the above operations is to place the res-

onator in state |n�res, if and only if the n
th A-qubit, is

in the exited state. After this “loading” phase, the joint
state of the A-qubits and the resonator is

|ψ�1 =
�

n

cn|k�A|n�res (4)

This has performed the correlation half of the feedback
control, as the A-qubits have been fully correlated with
the resonator.
To complete the loading of the resonator, we must undo

the correlation with the A-qubits. This requires that we
perform an operation to map each of the qubit states to
a single state, and this in turn requires us to perform
an operation on the qubits that is conditional on the
number-state of the resonator. This is the actuation part
of the feedback process.
To perform the actuation, we couple the resonator

to each of the qubits off-resonantly (a “dispersive cou-
pling” [? ]). This uses the same σxx coupling as above,
but this time we do not bring the qubits on-resonance by
modulating the coupling strength. The resulting interac-
tion is

Hfb = µ




�

j

σ(j)
z,A +

�

j

σ(j)
z,B



 a
†
a. (5)

This interaction shifts the frequency of each qubit by nµ,
where n is the number of phonons in the resonator. To
ensure that the n

th A-qubit finishes in its ground state,
we need to flip it to the ground state if it is excited, and
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Multi-Qubit Memory
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FIG. 1. A diagram of the coherent feedback circuit for loading

a register of two qubits into a nano-resonator. The key gives

the meaning of the lines that connect the qubits together, to

the resonator, and to external control gates. How the circuit

works is described in the text.

used to make the respective transfers one at a time.
The circuit works as follows. First the state of the n-

qubit quantum register is transferred to a set of N = 2n

qubits (these are the qubits labelled by Ai in Fig. 1). We
will call this set of qubits the “A”-qubits. The mapping is
chosen so that each of the states of the register is encoded
in a state of the A-qubits in which only one of the qubits
is in its excited state. Let us denote the joint state of the
A-qubits, in which only the k

th qubit is excited as |k�A.
The initial state of the A-qubit set, to be loaded into the
resonator, is then

|ψ�A =
N−1�

k=0

ck|k�A, (1)

where the coefficients cn are the coefficients that describe
the state of the register.

Each of the A-qubits is coupled to one of a set of “B”-
qubits (the qubits labelled by Bi in Fig. [? ]), via the

interaction σ(i)
z,Aσ

(i)
z,B. Here we denote the σz operator for

the i
th qubit of set A (respectively B) as σ(i)

z,A (respec-

tively σ(i)
z,B). The full interaction Hamiltonian between

the a and b sets is thus

Hab =
N�

i=1

σ(i)
z,Aσ

(i)
z,B. (2)

This interaction will allow the A-qubits to control the
interactions between each of the B-qubits and the res-
onator. In particular, they can control whether or not
the B qubits transfer phonons to the resonator.

The interaction between the B-qubits and the res-
onator is the rotating-wave “Jaynes-Cummings” interac-
tion given by

HAB =
N�

i=1

aσ(i)
+,B + a

†σ(i)
−,B. (3)

This interaction is obtained by coupling each qubit to
the resonator via the Hamiltonian σxx, where x is the
resonator position, and modulating the strength of this
coupling at the difference frequency between the qubit
and resonator. One then makes the rotating-wave ap-
proximation, which requires that the coupling rate must
be much smaller than the frequency of the resonator.
The Jaynes-Cummings interaction allows each of the

B qubits to transfer phonons to the resonator. Specifi-
cally, we turn on each of these interactions for a speci-
fied time, and concurrently drive the qubits, so that the
n
th B-qubit loads exactly n phonons into the resonator.

The key is that this process is switched off and on by
the A-qubits. The transfer will only take place if the
B-qubits are on-resonance with the resonator (via the
frequency-conversion coupling). By virtue of the interac-
tion between the A and B qubits, each A qubit will shift
its respective B qubit off-resonance if the A-qubit is in
its excited state. If a B-qubit is off-resonance it will re-
main in its ground state. For each loading operation, we
also chose the driving of the B-qubits so that they finish
the process in their ground states. They therefore finish
the loading step in their initial (ground) states, and are
uncorrelated with any of the other systems.
The result of the above operations is to place the res-

onator in state |n�res, if and only if the n
th A-qubit, is

in the exited state. After this “loading” phase, the joint
state of the A-qubits and the resonator is

|ψ�1 =
�

n

cn|k�A|n�res (4)

This has performed the correlation half of the feedback
control, as the A-qubits have been fully correlated with
the resonator.
To complete the loading of the resonator, we must undo

the correlation with the A-qubits. This requires that we
perform an operation to map each of the qubit states to
a single state, and this in turn requires us to perform
an operation on the qubits that is conditional on the
number-state of the resonator. This is the actuation part
of the feedback process.
To perform the actuation, we couple the resonator

to each of the qubits off-resonantly (a “dispersive cou-
pling” [? ]). This uses the same σxx coupling as above,
but this time we do not bring the qubits on-resonance by
modulating the coupling strength. The resulting interac-
tion is

Hfb = µ




�

j

σ(j)
z,A +

�

j

σ(j)
z,B



 a
†
a. (5)

This interaction shifts the frequency of each qubit by nµ,
where n is the number of phonons in the resonator. To
ensure that the n

th A-qubit finishes in its ground state,
we need to flip it to the ground state if it is excited, and
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FIG. 1. A diagram of the coherent feedback circuit for loading

a register of two qubits into a nano-resonator. The key gives

the meaning of the lines that connect the qubits together, to

the resonator, and to external control gates. How the circuit

works is described in the text.

used to make the respective transfers one at a time.
The circuit works as follows. First the state of the n-

qubit quantum register is transferred to a set of N = 2n

qubits (these are the qubits labelled by Ai in Fig. 1). We
will call this set of qubits the “A”-qubits. The mapping is
chosen so that each of the states of the register is encoded
in a state of the A-qubits in which only one of the qubits
is in its excited state. Let us denote the joint state of the
A-qubits, in which only the k

th qubit is excited as |k�A.
The initial state of the A-qubit set, to be loaded into the
resonator, is then

|ψ�A =
N−1�

k=0

ck|k�A, (1)

where the coefficients cn are the coefficients that describe
the state of the register.

Each of the A-qubits is coupled to one of a set of “B”-
qubits (the qubits labelled by Bi in Fig. [? ]), via the

interaction σ(i)
z,Aσ

(i)
z,B. Here we denote the σz operator for

the i
th qubit of set A (respectively B) as σ(i)

z,A (respec-

tively σ(i)
z,B). The full interaction Hamiltonian between

the a and b sets is thus

Hab =
N�

i=1

σ(i)
z,Aσ

(i)
z,B. (2)

This interaction will allow the A-qubits to control the
interactions between each of the B-qubits and the res-
onator. In particular, they can control whether or not
the B qubits transfer phonons to the resonator.

The interaction between the B-qubits and the res-
onator is the rotating-wave “Jaynes-Cummings” interac-
tion given by

HAB =
N�

i=1

aσ(i)
+,B + a

†σ(i)
−,B. (3)

This interaction is obtained by coupling each qubit to
the resonator via the Hamiltonian σxx, where x is the
resonator position, and modulating the strength of this
coupling at the difference frequency between the qubit
and resonator. One then makes the rotating-wave ap-
proximation, which requires that the coupling rate must
be much smaller than the frequency of the resonator.
The Jaynes-Cummings interaction allows each of the

B qubits to transfer phonons to the resonator. Specifi-
cally, we turn on each of these interactions for a speci-
fied time, and concurrently drive the qubits, so that the
n
th B-qubit loads exactly n phonons into the resonator.

The key is that this process is switched off and on by
the A-qubits. The transfer will only take place if the
B-qubits are on-resonance with the resonator (via the
frequency-conversion coupling). By virtue of the interac-
tion between the A and B qubits, each A qubit will shift
its respective B qubit off-resonance if the A-qubit is in
its excited state. If a B-qubit is off-resonance it will re-
main in its ground state. For each loading operation, we
also chose the driving of the B-qubits so that they finish
the process in their ground states. They therefore finish
the loading step in their initial (ground) states, and are
uncorrelated with any of the other systems.
The result of the above operations is to place the res-

onator in state |n�res, if and only if the n
th A-qubit, is

in the exited state. After this “loading” phase, the joint
state of the A-qubits and the resonator is

|ψ�1 =
�

n

cn|k�A|n�res (4)

This has performed the correlation half of the feedback
control, as the A-qubits have been fully correlated with
the resonator.
To complete the loading of the resonator, we must undo

the correlation with the A-qubits. This requires that we
perform an operation to map each of the qubit states to
a single state, and this in turn requires us to perform
an operation on the qubits that is conditional on the
number-state of the resonator. This is the actuation part
of the feedback process.
To perform the actuation, we couple the resonator

to each of the qubits off-resonantly (a “dispersive cou-
pling” [? ]). This uses the same σxx coupling as above,
but this time we do not bring the qubits on-resonance by
modulating the coupling strength. The resulting interac-
tion is

Hfb = µ




�

j

σ(j)
z,A +

�

j

σ(j)
z,B



 a
†
a. (5)

This interaction shifts the frequency of each qubit by nµ,
where n is the number of phonons in the resonator. To
ensure that the n

th A-qubit finishes in its ground state,
we need to flip it to the ground state if it is excited, and
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Conclusions
• Superconducting Circuits are an exciting 

testbed for quantum processes (state 
transfer) and other algorithms.

• Superconducting resonators are really 
interesting---let’s use them!

• Quantum Routing is both optimal and robust 
for certain networks of oscillators

• Entangled Resonator States Demonstrated!

• Quantum State Synthesis and Logic Gates on 
the way---stay tuned!
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