

# Quantum Routing and Beyond with Superconducting Resonators 

## Frederick W. Strauch

## Department of Physics Williams College

Funding: NSF, Research Corporation

## Collaborators



Kurt Jacobs, UMass
Boston


Ray Simmonds, NIST Boulder

## Collaborators



Chris Chudzicki '10, MIT

Kurt Jacobs, UMass Boston


Ray Simmonds, NIST Boulder

## Outline

- Superconducting Qubits and Resonators
- Quantum Routing on Networks
- Perfect State Transfer on Hypercube Networks
- Parallel State Transfer and Efficient Quantum Routing
C. Chudzicki '10 + FWS, Phys. Rev. Lett. 105, 260501 (2010)
- Quantum Computing with Superconducting Resonators
- Entangled 'NOON' States
- Multi-level quantum logic

FWS, K Jacobs, and RW Simmonds, Phys. Rev. Lett. 105, 050501 (2010) FWS + K Jacobs, in preparation

## Quantum Computing

## Executive Summary

IVE INVENTED A QUANTUM
COMPUTER, CAPABLE OF
INTERACTING WITH MATTER
FROM OTHER UNIVERSES
TO SOLVE COMPLEX
EQUATIONS.


## Quantum Computing

## Extended Abstract

## Quantum Computer:

A hypothetical device which uses the intrinsic weirdness of the universe (?multiverse?) to speed up computational tasks.
 Quantum Algorithms: Factoring, Search, Simulation (+ a few more)
Quantum Bit: A bit (binary digit) that can be in a superposition of both 0 and I

## Phase Qubit maenomen mexemen

## Artificial Atom, Controlled by Wires!

$-\frac{\hbar^{2}}{2 C\left(\Phi_{0} / 2 \pi\right)^{2}} \frac{d^{2} \Psi}{d y^{2}}-\frac{\Phi_{0}}{2 \pi}\left(I_{c} \cos \gamma+I_{b} \gamma\right) \Psi=E \Psi$



AC Circuits:
Capacitor, Inductor + JJunction


## Tunable Oscillator



Sweep of bias current allows experimental control of energy levels.

## Tunable Oscillator



Sweep of bias current allows experimental control of energy levels.

## Phase Qubit Spectroscopy

 f (GHz)

Sudeep Dutta et al. (Univ. Maryland)

## Phase Qubit Spectroscopy

f (GHz)


I ( $\mu \mathrm{A}$ )
Each microwave transition is an excitation of the junction with an increased tunneling rate. Bright indicates a large number of tunneling events, dark a small number of events.


Sudeep Dutta et al. (Univ. Maryland)

## Coupling Qubits by Cavities


${ }^{\text {cosenent }}$ Coherentum state storage and transfer between two phase qubits via a resonant cavity", M. Sillanpaa, J. I. Park, and R.W. Simmonds, Nature 449, 438 (2007)

## Coupling Qubits by Cavities


${ }^{c}$ Coherent quantum state storage and transfer between two phase qubits via a resonant cavity", M. Sillanpaa, J. I. Park, and R.W. Simmonds, Nature 449, 438 (2007)

## Coupling Qubits by Cavities


"Coherent quantum state storage and transfer between two phase qubits via a resonant cavity", M. Sillanpaa, J. I. Park, and R.W. Simmonds, Nature 449, 438 (2007)

## Arbitrary Control of a Superconducting Resonator



- Martinis Group, UC Santa Barbara (2008)


## Arbitrary Control of a Superconducting Resonator



- Martinis Group, UC Santa Barbara (2008)


# Arbitrary Control of a Superconducting Resonator 

$$
|\Psi\rangle=|0\rangle+|3\rangle+|6\rangle
$$



- Martinis Group, UC Santa Barbara (2008)


## Outline

- Superconducting gubits and Pesenaters
- Quantum Routing on Networks
- Perfect State Transfer on Hypercube Networks
- Parallel State Transfer and Efficient Quantum Routing
- Quantum Computing with Superconducting Resonators


## Quantum Networks

- Quantum computers require many qubits that can quickly communicate with each other.
- A possible solution is to couple qubits (or oscillators) as a hypercube network. (each node represents a qubit, coupled to some other qubits)
- These networks could be implemented using superconducting qubits!



## Quantum Networks

- Quantum computers require many qubits that can quickly communicate with each other.
- A possible solution is to couple qubits (or oscillators) as a hypercube network. (each node represents a qubit, coupled to some other qubits)
- These networks could be implemented using superconducting qubits!



## Quantum Routing:

Qubits Schematic

## Qubits



## Quantum Routing:

Qubits

| $Q_{1}$ |
| :--- |
| $Q_{2}$ |

 Q7

Q8

## Quantum Routing:

Qubits Schematic

## Qubits



## Quantum Routing:

Qubits

## Schematic

## Qubits



## Quantum Routing:

Qubits


## Qubits

## Quantum Routing

- Goal: Use a network of elements (qubits or resonators) to transfer quantum information.
- Programmable---send information between any two nodes.
- Parallel---information between different pairs of nodes can be sent at the same time.
- Ideally suited for entanglement distribution between distinct registers for teleportation, error detection, ancilla preparation, and other steps toward fault tolerance.


## Entanglement $=$ Teleportation

- Discovered by Bennett, Brassed, Crepeau, Jozsa, Peres, Wootters
- Very useful for quantum computers!


Very Unlikely

## Entanglement $\Rightarrow$ Teleportation

- Discovered by Bennett, Brassed, Crepeau, Jozsa, Peres, Wootters
- Very useful for quantum computers!


Very Unlikely

but who knows?

## Why Hypercubes?

- Transfer of a single quantum state is governed by a matrix differential equation:
- $\omega$ is a frequency
- A is the adjacency matrix of the network (graph)

$$
i \frac{d \Psi}{d t}=\omega A \Psi
$$

- $\mathrm{A}_{\mathrm{jk}}=\mathrm{I}$ if nodes j and k are connected
- $\mathrm{A}_{\mathrm{jk}}=0$ if nodes j and k are not connected
- Two nodes: (pair):

$$
\Psi=\binom{\psi_{1}}{\psi_{2}} \quad A_{\text {pair }}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

## Quantum State Transfer

$$
\Psi=\binom{\psi_{1}}{\psi_{2}} \quad \mathbf{2} A_{\text {pair }}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \Psi(t)=\exp \left(-i \omega A_{\text {pair }} t\right) \Psi(0) \\
& \exp \left(-i \omega A_{\text {pair }} t\right)=\left(\begin{array}{cc}
\cos (\omega t) & -i \sin (\omega t) \\
-i \sin (\omega t) & \cos (\omega t)
\end{array}\right)
\end{aligned}
$$

## Quantum State Transfer

$$
\begin{aligned}
& \Psi=\binom{\psi_{1}}{\psi_{2}} \quad \left\lvert\, \longrightarrow 2 A_{\text {pair }}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right. \\
& \Psi(t)=\exp \left(-i \omega A_{\text {pair }} t\right) \Psi(0) \\
& \exp \left(-i \omega A_{\text {pair }} t\right)=\left(\begin{array}{cc}
\cos (\omega t) & -i \sin (\omega t) \\
-i \sin (\omega t) & \cos (\omega t)
\end{array}\right)
\end{aligned}
$$

## Quantum State Transfer

$$
\begin{aligned}
& \Psi=\binom{\psi_{1}}{\psi_{2}} \quad \mathbf{2} A_{\text {pair }}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \Psi(t)=\exp \left(-i \omega A_{\text {pair }} t\right) \Psi(0) \\
& \exp \left(-i \omega A_{\text {pair }} t\right)=\left(\begin{array}{cc}
\cos (\omega t) & -i \sin (\omega t) \\
-i \sin (\omega t) & \cos (\omega t)
\end{array}\right)
\end{aligned}
$$

## Quantum State Transfer

## Quantum state oscillates (swaps) between I and 2

$$
\Psi=\binom{\psi_{1}}{\psi_{2}} \quad \mathbf{|} \bigcirc \mathbf{2} A_{\text {pair }}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\Psi(t)=\exp \left(-i \omega A_{\text {pair }} t\right.
$$

$$
\exp \left(-i \omega A_{\text {pair }} t\right)=\left(\begin{array}{r}
\mathrm{c} \\
-i
\end{array}\right.
$$



## Why Hypercubes ??

$$
\begin{gathered}
\Psi=\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) \\
\exp \left(-i \omega A_{\text {square }} t\right)=\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \\
s=\sin (\omega t) \\
c=c=\cos (\omega t)
\end{gathered}
$$

## Why Hypercubes ??

$$
\begin{gathered}
\Psi=\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) \mathbf{3} \\
\exp \left(-i \omega A_{\text {square }} t\right)=\left(\begin{array}{cc|cc|}
\hline 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\hline 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \\
s=\sin (\omega t) \\
\hline-i s \\
\hline
\end{gathered} A_{\mathrm{square}}=\left(\begin{array}{cccc}
2 & 0 & 0 \\
0 & 0 & c & -i s \\
0 & 0 & -i s & c
\end{array}\right) \times\left(\begin{array}{cccc}
c & 0 & -i s & 0 \\
0 & c & 0 & -i s \\
-i s & 0 & c & 0 \\
0 & -i s & 0 & c
\end{array}\right)
$$

## Why Hypercubes ??

$$
\begin{gathered}
\Psi=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) \mathbf{3} \\
\begin{array}{c}
\mathbf{2} \\
\exp \left(-i \omega A_{\text {square }} t\right)
\end{array} \\
\mathbf{4} \\
\begin{array}{ccc}
\hline 0 & 1 & 1 \\
0 & 0 \\
1 & 0 & 0
\end{array} \\
\hline 1
\end{gathered} 0
$$

## Why Hypercubes ??

$$
\left.\begin{array}{c}
\Psi=\left(\begin{array}{c}
|\Psi\rangle \\
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) \mathbf{2} \\
\begin{array}{l}
\text { asquare }
\end{array}=\left(\begin{array}{cc|cc}
\hline 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\hline 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right.
\end{array}\right)
$$

## Why Hypercubes ??

$$
\begin{aligned}
& \Psi=\left(\begin{array}{c}
|\Psi\rangle \\
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)_{\mathbf{3}} \quad \begin{array}{l}
\mathbf{2} \\
A_{\text {square }} \\
\mathbf{4}
\end{array}=\left(\begin{array}{|ll|ll|}
\hline 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\hline 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

## Why Hypercubes ???

$$
\Psi=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4} \\
\psi_{5} \\
\psi_{6} \\
\psi_{7} \\
\psi_{8}
\end{array}\right)
$$

## Why Hypercubes ???



## Why Hypercubes ???



## "Simple" matrices for each direction!

$\exp \left(-i \omega A_{\text {cube }} t\right)=$


## Why Hypercubes ???


"Simple" matrices fo
$\exp \left(-i \omega A_{\text {cube }} t\right)=$

$\left(\begin{array}{|ll|l|ll|ll|}\hline 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ \hline & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$


## Hypercube State Transfer

- Each node represents a qubit. Quantum states travel along all paths simultaneously in superposition with full constructive interference, yielding perfect state transfer.



## Hypercube State Transfer

- Each node represents a qubit. Quantum states travel along all paths simultaneously in superposition with full constructive interference, yielding perfect state transfer.



## Hypercube State Transfer

- Each node represents a qubit. Quantum states travel along all paths simultaneously in superposition with full constructive interference, yielding perfect state transfer.



## Hypercube State Transfer

- Each node represents a qubit. Quantum states travel along all paths simultaneously in superposition with full constructive interference, yielding perfect state transfer.



## Exact Calculation

with Qiao Zhang 'I3

$$
\Psi=|\Psi| e^{i \theta}
$$

## Orientation of Sphere $\sim \theta$

## Parallel State Transfer

- Transmit multiple quantum states at the same time!
- Use Oscillator Networks:

Each node has an infinite number of states!

- Calculation not as simple, but still exactly solvable.



## Parallel State Transfer

- Transmit multiple quantum states at the same time!
- Use Oscillator Networks:

Each node has an infinite number of states!

- Calculation not as simple, but still exactly solvable.



## Phase Qubit Cube 123



- Circuits do not need to be simple two-dimensional layouts.
- Multi-layer interconnects allow many crossovers and complex couplings.


Fabrication Process of Planarized Multi-Layer Nb Integrated Circuits
facman,



## Outline

- Supercondueting qubits and Pesenaters
- guantum Routing on Networks
- Perfect State Transfer on Hypercube Networles
- Parallel State Transfer and Efficient Quantum Routing
- Quantum Computing with Superconducting Resonators


## Chris Chudzicki's Senior Thesis

- Study tunable resonators: exactly solvable!
- Split cube into M subcubes by resonator frequencies. (Matrices are still simple!)
- Send quantum states in parallel.

-     -         - 


--

## Parallel Transfer Fidelity

Fidelity = Probability of successfully
transmitting a quantum state

$F(T) \gtrsim 1-\frac{3}{2} \log _{2}(M) \eta^{2} \sin ^{2} \xi_{T}$

Perfection!
$100-$ Fidelity(T)
1.0

$$
\eta=2 \Omega_{0} / \Delta \omega
$$

Detuning parameter

M = \# of parallel "messages"

## Efficient Quantum Routing

Method to Characterize the Efficiency of Quantum Routing by Parallel State Transfer

- Goal = Distribute entanglement between every pair of nodes ( $\mathrm{N}=2^{\mathrm{d}}$ total nodes for a hypercube network)
- Use parallel state transfer, sending states on each subcube
- Tune oscillators in a fixed frequency range (finite bandwidth)
- Qubit-Compatible Scheme = one state on each subcube
- Massively Parallel Scheme = multiple states on each subcube
- Efficiency = Entanglement Distrubution Rate


## Qubit-Compatible Scheme

One state per subcube
$\mathrm{N}=2^{\mathrm{d}}$ nodes total
Rate scales as:


$$
\mathcal{R}^{(\mathrm{QC})} \approx \frac{1}{T} N^{0.415}\left(1-\frac{3}{4} \frac{\Omega_{0}^{2}}{\left(\omega_{\max }-\omega_{\min }\right)^{2}} d^{2}(d+3)\right)
$$

Rate calculation includes full set of "messages," weighted by their fidelities.

## Massively Parallel Scheme

Multiple states per subcube
$\mathrm{N}=2^{\mathrm{d}}$ nodes total


Rate scales as:

$$
\mathcal{R}^{(\mathrm{MP})} \approx \frac{1}{T} N\left(1-\frac{3}{4} \frac{\Omega_{0}^{2}}{\left(\omega_{\max }-\omega_{\min }\right)^{2}} d^{2}(d+3)\right)
$$

## Massively Parallel Distribution

- Send oscillators' states between all corners simultaneously!

- Genuine Quantum Property!
- Excitations are noninteracting bosons: multiple photons just pass through each other.


## Massively Parallel Rate

## Comparing Efficiencies for <br> Qubit Compatible and Massively Parallel

Various Bandwidths


Entanglement Distribution using Oscillator Networks is both optimally efficient and robust?

## Apker Award



## Apker Award



## Outline

- Superconducting qubits and Resonaters
- Quantum Routing on Networks
- Perfect State Pranfien on Mypercube Networlis
- Panallel State ranncfer and Efficient

- Ouantum computing with Superconducting Resonators


## Beyond State Transfer

- Superconducting resonators could be used for quantum logic.
- Instead of qubits, these would be qudits (digits with arbitrary base)
- Resonators are significantly easier to fabricate and of higher quality than qubits!
- Results so far:
- Entangling Two Superconducting Resonators
- Using Resonator as Multi-qubit Memory
- Quantum Logic Using Resonator States


# Entangling Oscillators 

FWS, K Jacobs, and RW Simmonds, Phys. Rev. Lett. 105, 050501 (2010)
Quantum Algorithm to generate highly non-classical "NOON" states:
$\left.\Psi_{\text {NOON }}\right\rangle=|\mathrm{N}, 0\rangle+|0, \mathrm{~N}\rangle$



TABLE I NOCXV State Syelhesis Peverfere

```
Sate
```



```
A. 品艮, \(1=\) "
```




```
\(\tilde{K}_{-+}+\mathrm{BH}_{\mathrm{c}}+=\pi,=\mathrm{m}=\mathrm{m}\)
A. \(\operatorname{sef}_{a, ~}=\pi / \sqrt{3}\)
```



```
fill sht.1 \(=\) ?
```




```
\((0,0,2)-3.1,6\)
```



```
\(B_{4}, \operatorname{cosec}_{2}=+/ \sqrt{3} \quad-(0,0,3)-830\)
```


## Experimental Results

PRL 106, 060401 (2011)
|비․ Selected for a Viewpoint in Physics PHYSICAL REVIEW LETTERS

## Deterministic Entanglement of Photons in Two Superconducting Microwave Resonators

H. Wang, ${ }^{1,2}$ Matteo Mariantoni, ${ }^{1}$ Radoslaw C. Bialczak, ${ }^{1}$ M. Lenander, ${ }^{1}$ Erik Lucero, ${ }^{1}$ M. Neeley, ${ }^{1}$ A. D. O'Connell, ${ }^{1}$
D. Sank, ${ }^{1}$ M. Weides, ${ }^{1}$ J. Wenner, ${ }^{1}$ T. Yamamoto, ${ }^{1,3}$ Y. Yin, ${ }^{1}$ J. Zhao, ${ }^{1}$ John M. Martinis, ${ }^{1}$ and A. N. Cleland ${ }^{1, *}$
${ }^{1}$ Department of Physics, University of California, Santa Barbara, California 93106, USA
${ }^{2}$ Department of Physics and Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou 310027, China ${ }^{3}$ Green Innovation Research Laboratories, NEC Corporation, Tsukuba, Ibaraki 305-8501, Japan (Received 9 November 2010; published 7 February 2011)


2 mm

- Martinis Group, UC Santa Barbara


## Multi-Qubit Memory

FWS and K Jacobs, in preparation


## Multi-Qubit Memory

FWS and K Jacobs, in preparation


## Multi-Qubit Memory

FWS and K Jacobs, in preparation


## Quantum Logic

FWS and K Jacobs, in preparation


Same methods can be used to
Generate Arbitrary Transformations between Resonators

## Quantum Logic

FWS and K Jacobs, in preparation


Same methods can be used to
Generate Arbitrary Transformations between Resonators

## Quantum Logic

FWS and K Jacobs, in preparation


Same methods can be used to
Generate Arbitrary Transformations between Resonators

## Conclusions

- Superconducting Circuits are an exciting testbed for quantum processes (state transfer) and other algorithms.
- Superconducting resonators are really interesting---let's use them!
- Quantum Routing is both optimal and robust for certain networks of oscillators
- Entangled Resonator States Demonstrated!
- Quantum State Synthesis and Logic Gates on the way---stay tuned!

