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Classical Random Walk!
•  Consider a process in which a 

particle can move either left or 
right, in one dimension, based on 
an internal state (coin).!

•  Before each step, the coin is 
flipped.  !

•  This generates a stochastic 
process, governed by the 
following equations for the 
probability:!

! 

pR (n,t +1) =
1
2
pR (n "1,t) +

1
2
pL (n "1,t)

pL (n,t +1) =
1
2
pL (n +1,t) +

1
2
pR (n +1,t)

n-2     n-1      n      n+1     n+2!

Space!
Ti

m
e!



•  Change probabilities to 
probability amplitudes.!

•  Change coin flip to unitary 
transformation.!

•  E.g. Hadamard Walk:!

_!

Interference!!Aharonov, Davidovich, and Zagury (1993)!

n-2     n-1      n      n+1     n+2!

Space!
Ti

m
e!

Quantum Random Walk!



Quantum Walk vs. Classical Walk!

1 0 11 0 4 0 4 0 11 0 1 /32 1 0 5 0 10 0 10 0 5 0 1 

0 1 0 6 0 2 0 6 0 1 0 /16 0 1 0 4 0 6 0 4 0 1 0 

0 0 1 0 3 0 3 0 1 0 0 /8 0 0 1 0 3 0 3 0 1 0 0 
0 0 0 1 0 2 0 1 0 0 0 /4 0 0 0 1 0 2 0 1 0 0 0 

0 0 0 0 1 0 1 0 0 0 0 /2 0 0 0 0 1 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 /1 0 0 0 0 0 1 0 0 0 0 0 

QW Probabilities! CW Probabilities!

Ti
m

e!

Space!

Ensures symmetric dynamics!



Quantum Interference = Quadratic Speed-up!

Interesting Probability Distribution !
constant for -T/√2 < x < T/√2!

 Wave equation w/ Dispersion (Knight, Roldan, & Sipe 2003)!



DTQWs on General Graphs!

Use d-dimensional coin 
operator C for vertices of 

degree d!

Conditional shift operator 
S, depends on each vertex!

Discrete-Time Quantum Walk!

! 

S c,v = c,w(c,v)

! 

U = S(C" I)
#(T) =UT #(0)

w(c,v) = vertex connected to v 
along edge c!

Unitary Mapping:!

Other definitions possible!



DTQWs on General Graphs!

Use d-dimensional coin 
operator C for vertices of 

degree d!

Conditional shift operator 
S, depends on each vertex!

Discrete-Time Quantum Walk!
1!

2!
18!

9!

! 

S c,v = c,w(c,v)

! 

S c =1,v =1 = c =1,v = 2
S c = 2,v =1 = c = 2,v = 9
S c = 3,v =1 = c = 3,v =18

E.g. d=3!

w(c,v) = vertex connected to v 
along edge c!



Diffusion on General Graphs!

Use Laplacian matrix for 
graph!

L = A – D!
A = adjacency matrix!
D = degree matrix !

1!
2!

18!

9!

! 

Di,i = 3 "i
A1,2 = A1,9 = A1,18 =1

! 

Di,i = di,  di = degree of vertex i  

Ai, j =
1 if  (i, j)  are connected
0 otherwise
" 
# 
$ 



Diffusion on General Graphs!

Use Laplacian matrix for 
graph!

L = A – D!
A = adjacency matrix!
D = degree matrix !

p = probability vector!

! 

dp
dt

= Lp

! 

p j =1
j=1

|G |

"

! 

p(t) = eLt p(0)



CTQW on General Graphs!

Sometimes H=A  !

Continuous-Time Quantum Walk!

Use Laplacian matrix as 
Hamiltonian:!
H = A – D!

! 

i
d"
dt

= H"

! 

" j

2
=1

j=1

|G |

#

! 

"(t) = e# iHt"(0)

= state vector  (probability amplitudes)!
  

! 

" = #1,#2,!,#|G |{ }



DTQW vs CTQW!
One-dimensional Line!

Dynamics can be very similar!!

Jacobi polynomial!
Airy, Bessel fxn 
approximations!

Bessel function!
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Quantum Walk Search!
Grover Search !

Let w be the 
marked vertex!

! 

U = ei" # # ei" w w
! 

" =
1
N

v
v=1

N

#

! 

UT " # w

Inversion about average! Oracle!

! 

" " =
1
N
(A # I)

Similar results by CTQW on 
complete graph!

! 

e"iHT # $ w
! 

H = " " + w w

= item of interest in !
database!

= uniform !
superposition!



Authors! Graph! Walk! Time!
Farhi & Gutmann (1998)! Complete! CTQW! N1/2!

Shenvi, Kempe,  & Whaley 
(2003)!

Hypercube! DTQW by coin! N1/2!

Aaronson & Ambainis (2003)! D-dim Lattice! DTQW by coin!N
1/2 (log N)3/2 D=2!

N1/2 D≥3!

Childs & Goldstone (2003)! D-dim Lattice! CTQW!

N D=2!
N5/6 D=3!

N1/2 log N D=4!
N1/2 D>4!

Ambainis, Kempe, & Rivosh 
(2004)!

D-dim Lattice! DTQW by coin! N1/2 log N D=2!
N1/2 D≥3!

Childs & Goldstone (2004)! D-dim Lattice! CTQW + Spin! N1/2 log N D=2!
N1/2 D≥3!

Magniez, Nayak, Roland, & 
Santha (2007)!

D-dim Lattice!
DTQW by 
reflection!

N1/2 (log N)1/2 D=2!
N1/2 D ≥3!

QW Local Search!



Mixing on Quantum Walks 

16 

! 

Pv (t) = v e"iHt a
2
#

1
2d at time  $t = % /4

Moore & Russell (2001)!

Quantum walks mix faster (often quadratically) 
than classical walks---and decoherence helps! !

Mixing time = time when probability is 
essentially uniform over graph!

Kendon & Tregenna (2003)!

Hypercube!



Hitting on Quantum Walks 

Quantum walks hit exponentially faster than 
random walks on glued trees and hypercube graphs!

a!

b!

a!

b!

! 

Phit (t) = b e" iHt a
2

Hitting time = time when probability is large (>1/log|G|)!

(One-shot hitting time; others have been studied by Kempe, Kendon, and Brun)!



0001!

0000!

0010!0100!1000!

0011!

1111!

1110!1101!1011!0111!

1100!1010!0101!

1001!

0110!

Hypercube Quantum Walk!
•  Each vertex of the d-

dimensional hypercube can be 
encoded by a set of d bits 
(E.g. x = x1x2x3x4). 

•  Hamiltonian (~Adjacency 
Matrix) simply flips each bit! 

! 

H =" # x
( j )

j=1

d

$
Exponential Speedup: !

Quantum states propagate from 
corner to corner in time 

independent of the hypercube 
dimension d!!

Not a computational speedup!

Wavefunction evolves simply:!

! 

"(t) = e# i$t% x( )&d "(0)

! 

T =
"
2#At time           all bits flip!!



Glued Trees Quantum Walk 

19 

QW on graph of 
size ~ 2d can be 
represented by 

walk on line with 
2d+1 sites!

QW hits in time ~ 2d+1, 
while RW takes time ~ 2d!

Childs et al. (2001)!



• Problem: Starting from the entrance (green), find the exit (red). !
• Resources: Local queries of an oracle.!

• Classical Running Time: polynomial in N (number of nodes)!

Graph Traversal Problem!



• Problem: Starting from the entrance (green), find the exit (red). !
• Resources: Local queries of an oracle (unitary operator). !

• Quantum Running Time: polynomial in log N.!

Graph Traversal Problem!



Exponential Algorithmic 
Speedup by Quantum Walk!!

Childs (2003)!

Graph Traversal Problem!

defect!

Reduction leads to QW on 
line with a defect!

Significant amplitude is transmitted through!!
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DTQW (Discrete-Time QW)!

Connecting QWs!

• Can one get one from the other?!

• What physics drives these walks?!

CTQW (Continuous-Time QW)!

θ=coin rotation angle!



•  DTQW = Feynman’s Checkerboard!

•  Feynman’s Checkboard                           
= Dirac Equation!

Feynman Path Integral!

D. Meyer (1996)!



Feynman’s Proof!

Figure 8 from “Feynman and the visualization of 
space-time processes”, Silvan S. Schweber, Rev. 

Mod. Phys. 58, 499 (1986).!



Feynman’s Proof!

Feynman (1946)!Feynman knows his Bessel 
functions!!



Feynman’s Proof!

Feynman (1946)!
This is the DTQW!!



Relativistic Walks!
•  Can we use the Dirac equation to understand the 

DTQW?!

•  Yes, if we have some method to generate wave-packet 
solutions!

•  Look at wave-packet solutions of Dirac equation!!

•  (Use Momentum Space!)!

•  Compare with wave-packet solutions of DTQW!

•  (Use Momentum Space!)!

•  CTQW comes for free!! FWS, Phys. Rev. A 73, 054302 (2006) 



Dirac Wave-Packet!

Modified Bessel fxn!

One-dimensional Dirac Hamiltonian:!

Dirac wave-packets! a = localization parameter!



DTQW Wave-Packet!

! 

"±(n,t) = N e#($± i t )% (k )eikn (U # e± i% (k ))
1
1
& 

' 
( 
) 

* 
+ dk

#,

+,

-

= . N 
In (±(t #1) # i$) # e# i/ In#1(±t # i$)
In (±(t #1) # i$) # e# i/ In +1(±t # i$)

& 

' 
( 

) 

* 
+ 

In (z) =
1
2,

e#iz% (k )eikndk
#,

+,

- 0 ine# iz, / 2Jn (zcos/ ), cos/ <<1

DTQW unitary mapping!

DTQW “wave-packets”! ! = localization parameter!



CTQW!Dirac! DTQW!

Non-Relativistic Wave-Packet Spreading!

Relativistic Wave-Packet Spreading!

Space!

Ti
m

e!



Slices!



Dynamics governed by dispersion relations!

Small !! Large !!



Dirac 

"#!x#c!t$0 "$%/2, !t$0 

c$&'

CTQW 

Schrödinger 

DTQW 

Introduce arbitrary coin parameter !, take various continuum limits! 

FWS, Phys. Rev. A 74, 030301 (R) (2006) 
FWS, J. Math. Phys., 48, 082102 (2007) 

Classical Analogy: Simple Diffusion vs. Telegrapher’s Equation 

!x$0 

Connecting the Quantum Walks!



Connection for general graphs 
• Childs (2008):  

– Uses Szedegy’s QW 
– Hamiltonian simulation method 
– QW “walks” on Hilbert space of dimension |G|2        

(each state ~ edge of graph).  
• D’Allesandro (2008):  

– Controls QW by varying coin-flips. 
– Lie theoretical proof of universal control 
– QW on graphs of size |G|, coin flips of length log |G| 

36 
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Algorithms 
• NAND Tree: 

• Graph Isomorphism 

• Universality 

38 

Properties of graph revealed by scattering!
Farhi, Goldstone, & Guttman (2008)!

Properties of graph revealed by 
multiple walkers (Wang + others)!

? 

ALL Q Computations can be written as a CTQW   
Childs (2008) !



Encodings and Implementations 
• Quantum Computer 

– Graph vertices encoded in quantum bits 
– Walks encoded by unitary logic gates 
– Most efficient encoding has log2|G| qubits = 

binary encoding 
• Physical Network 

– Graph vertices encoded in degrees of 
freedom (atom sites, electron sites, etc.) 

– Walks encoded by natural Hamiltonian 
– Most natural encoding has |G| qubits = 

unary encoding 39 



QW Implementations!
Proposal! System! Walk! Encoding!

W. Dür et al. (2002)! Optical Lattices! 1D DTQW! Unary!

B. C. Sanders et al. (2002)! Cavity-QED! 1D DTQW! Unary/Binary!
A. Romito et al. (2005)! Superconductors! 1D CTQW! Unary!
C. A. Ryan et al. (2005)! NMR exp! 2D DTQW! Binary!

J. M. Taylor (2007)! Quantum Dots! NAND CTQW! Unary!
F. W. Strauch (2008)! Superconductors! Hypercube! Unary!
Karski et al. (2009)! Optical Lattices! 1D DTQW! Unary!

Zähringer et al. (2010)! Ion Traps! 1D DTQW! Unary!
Broome et al. (2010)! Photons! 1D DTSQW! Unary!

(not an exhaustive list)!

DTQW = Discrete-time quantum walk  CTQW = Continuous-time quantum walk!

Most proposals encode the walk using a unary representation.  
Does this really demonstrate quantum computational speedup?!



Nature’s Implementation? 
Photosynthesis!

M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik,!
 J. Chem. Phys. 129, 174106 (2008)!

FMO Complex! LH2 Complex!

Unary QW with disorder & decoherence!



•  Vertex Model!

•  Each node is represented by the 
excited state of one qubit.!

•  Unary encoding with 2d qubits !

•  Dephasing occurs between 
vertices of the hypercube.!

•  Useful model for quantum state 
transfer in qubit networks.!

Two “natural” models of decoherence for the hypercube:!
•  Subspace Model!

•  Each node is represented by        
a state of several qubits.!

•  Binary encoding with d qubits !

•  Dephasing occurs between 
subspaces of the hypercube.!

•  Useful model for quantum 
computer implementation of 
quantum walks.!

G. Alagic and A. Russell, !
Phys. Rev. A 72, 062304 (2005)!

F.  W. Strauch, Phys. Rev. A 79, 032319 (2009) !
arXiv: 0808.3403!

See also A. P. Hines and P. C. E. Stamp, arXiv: 0711.1555!

Decoherence in the Hypercube 
Quantum Walk!



Decoherence in the Hypercube 
Quantum Walk!

Subspace Model!

Vertex Model!

Lindblad Equation!

Dephasing between different subspaces (xj ≠ yj)!

Dephasing between different vertices (x ≠ y)!

(x = x1x2x3x4x5…)!
Dephasing leads to decay of off-diagonal elements of ρ!

! 

d"
dt

= #i H,"[ ] # $ j L j"L j
+ #

1
2
L j
+L j" #

1
2
"L j

+L j

% 

& 
' 

( 

) 
* 

j
+

! 

d"x,y
dt

= #i (Hxz
z
$ "z,y # "x,zHzy ) # %(1#&xy )"x,y

! 

d"x,y
dt

= #i (Hxz
z
$ "z,y # "x,zHzy ) # % (1#&x j y j )

j
$ "x,y



Comparison of Models!

Perturbative Results:!
Subspace Model = Simple !

Vertex Model = Not Simple!

ω = 1, λ = 1/5, T = π /2"Subspace! Vertex!

T! T!

P(t) = Probability to transfer state from corner to corner.!

! 

Ps(t) " 2
#d 1# e#$t / 2 cos(%t)[ ]d

See F.  W. Strauch, Phys. Rev. A 79, 032319 (2009) for details!



Hitting Probability!

Decoherence in the vertex model has a hitting probability with a 
lower bound independent of the hypercube dimension d !!

Quantum speedup robust for unary encoding.!

Vertex!

Subspace!

! 

Pv (T) > e"#T



Quantum State Transfer!

d = 1 
d = 2 d = 3 d = 4 

One can transfer the state of a single qubit from site A to site B 
using a set of permanently coupled qubits with Hamiltonian: !

Dynamics of a single excitation (with ω = 0) maps onto the 
continuous-time quantum walk with H = ħΩ , where the coupling 

matrix Ω is proportional to the adjacency matrix of the 
coupling graph.  Certain choices of couplings such as the 

hypercube lead to perfect state transfer:!
Christandl et al. (2004)!





Superconducting Circuits!

I (µ A) 

f  (GHz) 

U Maryland!

UC Santa Barbara!

Phase Qubit!

Artificial Atoms→ Artificial Molecules →Artificial Solids!

Qubits + Resonators !



• Circuits do not need to be 
simple two-dimensional 

layouts.  !

• Multi-layer interconnects 
allow many crossovers and 

complex couplings.!

Courtesy Ray Simmonds, NIST Boulder 

1! 2! 3!



Perfect State Transfer with Phase 
Qubits!

•  Programmable: Any two nodes can 
communicate by programming the qubit 
frequencies in the network.!

•  Parallel: Multiple quantum states can be 
transferred at the same time.!

•  Efficient: Transfer time is independent 
of the distance between nodes!!

•  High Fidelity: F > 90% possible using 
existing technology, modest dimensions!!

FWS and C.J. Williams, !
Phys. Rev. B 78, 094516 (2008)!

Requires Study of Disorder and Decoherencen!
C. Chudzicki and FWS, !

Phys. Rev. Lett. 105, 260501 (2010) !



Conclusions!
• Quantum Walks are an exciting testbed for 

quantum information processing!

•  Connections have emerged between and 
but each has their own advantages   
(CTQW for studying physical networks, 
DTQW for computer algorithms)!

•  Search algorithms well developed---new 
algorithms on the way?!

•  Implementations require study of encoding, 
decoherence, and disorder.  Understanding 
robustness may be the key.!


