

Quantum Walks in Discrete and Continuous Time

Frederick W. Strauch

Department of Physics
Williams College

Valencia 2011

NGT

Outline

- Quantum Walks
- DTQW \& CTQW
- Quantum Algorithms
- Searching, Mixing, Hitting, \& Graph Traversal
- Connecting the quantum walks
- Relativistic Limits \& Other Approaches
- Applications Present and Future
- Algorithms, Implementations, Quantum State Transfer

Classical Random Walk

- Consider a process in which a particle can move either left or right, in one dimension, based on an internal state (coin).
- Before each step, the coin is flipped.
- This generates a stochastic process, governed by the

Space following equations for the probability:

$$
\begin{aligned}
& p_{R}(n, t+1)=\frac{1}{2} p_{R}(n-1, t)+\frac{1}{2} p_{L}(n-1, t) \\
& p_{L}(n, t+1)=\frac{1}{2} p_{L}(n+1, t)+\frac{1}{2} p_{R}(n+1, t)
\end{aligned}
$$

Quantum Random Walk

- Change probabilities to probability amplitudes.
- Change coin flip to unitary transformation.
- E.g. Hadamard Walk:

$$
\begin{aligned}
& \psi_{R}(n, t+1)=\frac{1}{\sqrt{2}} \psi_{R}(n-1, t)+\frac{1}{\sqrt{2}} \psi_{L}(n-1, t) \\
& \psi_{L}(n, t+1)=\frac{1}{\sqrt{2}} \psi_{R}(n+1, t)-\frac{1}{\sqrt{2}} \psi_{L}(n+1, t)
\end{aligned}
$$

Aharonov, Davidovich, and Zagury (1993) Interference!

Quantum Walk vs. Classical Walk

QW Probabilities
CW Probabilities

Space

$$
\begin{array}{ll}
\psi_{R}(n, t=0)=\frac{1}{\sqrt{2}} \delta_{n, 0} & p_{R}(n, t=0)=\frac{1}{2} \delta_{n, 0} \\
\psi_{L}(n, t=0)=\frac{1}{\sqrt{2}} i \delta_{n, 0} & p_{L}(n, t=0)=\frac{1}{2} \delta_{n, 0}
\end{array}
$$

Ensures symmetric dynamics

Quantum Interference = Quadratic Speed-up

$$
\Delta x^{2} \sim \Delta t^{2}
$$

$\Delta x^{2} \sim \Delta t$

Interesting Probability Distribution
constant for $-\mathrm{T} / \sqrt{ } 2<\mathrm{x}<\mathrm{T} / \sqrt{ } 2$
Wave equation w/ Dispersion (Knight, Roldan, \& Sipe 2003)

DTQWs on General Graphs

Discrete-Time Quantum Walk
Use d-dimensional coin operator C for vertices of degree d

Conditional shift operator \mathbf{S}, depends on each vertex

$$
S|c, v\rangle=|c, w(c, v)\rangle
$$

$w(c, v)=$ vertex connected to v along edge c

Unitary Mapping:

$$
\begin{aligned}
& U=S(C \otimes I) \\
& |\Psi(T)\rangle=U^{T}|\Psi(0)\rangle
\end{aligned}
$$

Other definitions possible

DTQWs on General Graphs

Discrete-Time Quantum Walk
Use d-dimensional coin operator C for vertices of degree d

Conditional shift operator \mathbf{S}, depends on each vertex

$$
S|c, v\rangle=|c, w(c, v)\rangle
$$

$w(c, v)=$ vertex connected to v along edge c

E.g. $d=3$

$$
S|c=1, v=1\rangle=|c=1, v=2\rangle
$$

$$
S|c=2, v=1\rangle=|c=2, v=9\rangle
$$

$$
S|c=3, v=1\rangle=|c=3, v=18\rangle
$$

Diffusion on General Graphs

Use Laplacian matrix for graph

$$
L=A-D
$$

A = adjacency matrix
D = degree matrix

$D_{i, i}=d_{i}, d_{i}=$ degree of vertex i
$A_{i, j}=\left\{\begin{array}{lc}1 & \text { if }(i, j) \text { are connected } \\ 0 & \text { otherwise }\end{array}\right.$

$$
\begin{aligned}
& D_{i, i}=3 \forall i \\
& A_{1,2}=A_{1,9}=A_{1,18}=1
\end{aligned}
$$

Diffusion on General Graphs

Use Laplacian matrix for graph

$$
L=A-D
$$

A = adjacency matrix

$$
D=\text { degree matrix }
$$

$p=$ probability vector

$$
\sum_{j=1}^{|G|} p_{j}=1 \quad \frac{d p}{d t}=L p \quad p(t)=e^{L t} p(0)
$$

CTQW on General Graphs

Continuous-Time Quantum Walk
Use Laplacian matrix as Hamiltonian:

$$
H=A-D
$$

Sometimes $H=A$

$$
\Psi=\left\{\psi_{1}, \psi_{2}, \cdots, \psi_{|G|}\right\}
$$

$=$ state vector (probability amplitudes)

$$
\sum_{j=1}^{|G|}\left|\psi_{j}\right|^{2}=1 \quad i \frac{d \Psi}{d t}=H \Psi \quad \Psi(t)=e^{-i H t} \Psi(0)
$$

DTQW vs CTQW
 One-dimensional Line

Jacobi polynomial Airy, Bessel fxn approximations

Bessel function

Dynamics can be very similar!

Outline

- Quantum Walks
- DTQW \& CTQW
- Quantum Algorithms
- Search, Mixing, Hitting, \& Graph Traversal
- Connecting the quantum walks
- Relativistic Limits \& Other Approaches
- Applications Present and Future
- Algorithms, Implementations, Quantum State Transfer

Quantum Walk Search

Grover Search

Similar results by CTQW on complete graph

$$
H=|\psi\rangle\langle\psi|+|w\rangle\langle w|
$$

Inversion about average Oracle

$$
|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{v=1}^{N}|\nu\rangle
$$

= uniform
superposition

$$
U^{T}|\psi\rangle \rightarrow|w\rangle
$$

$$
e^{-i H T}|\psi\rangle \rightarrow|w\rangle
$$

QW Local Search

Authors	Graph	Walk	Time
Farhi \& Gutmann (1998)	Complete	CTQW	$N^{1 / 2}$
Shenvi, Kempe, \& Whaley (2003)	Hypercube	DTQW by coin	$N^{1 / 2}$
Aaronson \& Ambainis (2003)	D-dim Lattice	DTQW by coin	$\begin{gathered} \mathrm{N}^{1 / 2}(\log \mathrm{~N})^{3 / 2} \mathrm{D}=2 \\ \mathrm{~N}^{1 / 2} \mathrm{D} \geq 3 \end{gathered}$
Childs \& Goldstone (2003)	D-dim Lattice	CTQW	$\begin{gathered} N D=2 \\ N^{5 / 6} D=3 \\ N^{1 / 2} \log N D=4 \\ N^{1 / 2} D>4 \end{gathered}$
Ambainis, Kempe, \& Rivosh (2004)	D-dim Lattice	DTQW by coin	$\begin{gathered} \mathrm{N}^{1 / 2} \log \mathrm{ND}=2 \\ \mathrm{~N}^{1 / 2} \mathrm{D} \geq 3 \end{gathered}$
Childs \& Goldstone (2004)	D-dim Lattice	CTQW + Spin	$\begin{gathered} \mathrm{N}^{1 / 2} \log N \mathrm{D}=2 \\ \mathrm{~N}^{1 / 2} \mathrm{D} \geq 3 \end{gathered}$
Magniez, Nayak, Roland, \& Santha (2007)	D-dim Lattice	DTQW by reflection	$\begin{gathered} N^{1 / 2}(\log N)^{1 / 2} D=2 \\ N^{1 / 2} D \geq 3 \end{gathered}$

Mixing on Quantum Walks

Mixing time $=$ time when probability is essentially uniform over graph

Quantum walks mix faster (often quadratically) than classical walks---and decoherence helps!

Kendon \& Tregenna (2003)

Hypercube

Moore \& Russell (2001)

$$
\left.P_{v}(t)=\left|\langle v| e^{-i H t}\right| a\right\rangle\left.\right|^{2} \rightarrow \frac{1}{2^{d}} \text { at time } \omega t=\pi / 4_{16}
$$

Hitting on Quantum Walks

Hitting time $=$ time when probability is large $(>\mathrm{I} / \log |\mathrm{G}|)$

Quantum walks hit exponentially faster than random walks on glued trees and hypercube graphs
(One-shot hitting time; others have been studied by Kempe, Kendon, and Brun)

Hypercube Quantum Walk

- Each vertex of the ddimensional hypercube can be encoded by a set of \boldsymbol{d} bits (E.g. $x=X_{1} X_{2} X_{3} X_{4}$).
- Hamiltonian (~Adjacency Matrix) simply flips each bit!

$$
H=\omega \sum_{j=1}^{d} \sigma_{x}^{(j)}
$$

Wavefunction evolves simply:

$$
|\Psi(t)\rangle=\left(e^{-i \omega t \sigma_{x}}\right)^{\otimes d}|\Psi(0)\rangle
$$

At time $T=\frac{\pi}{2 \omega}$ all bits flip!

Exponential Speedup:

Quantum states propagate from corner to corner in time independent of the hypercube dimension d!

Not a computational speedup

Glued Trees Quantum Walk

> QW on graph of size $\sim 2^{\mathrm{d}}$ can be represented by walk on line with $2 \mathrm{~d}+1$ sites

QW hits in time ~ $2 \mathrm{~d}+\mathrm{I}$, while RW takes time $\sim 2^{\text {d }}$

Childs et al. (200I)

Graph Traversal Problem

-Problem: Starting from the entrance (green), find the exit (red). -Resources: Local queries of an oracle.
-Classical Running Time: polynomial in N (number of nodes)

Graph Traversal Problem

-Problem: Starting from the entrance (green), find the exit (red). -Resources: Local queries of an oracle (unitary operator).
-Quantum Running Time: polynomial in $\log N$.

Graph Traversal Problem

defect
Exponential Algorithmic Speedup by Quantum Walk! Childs (2003)

Reduction leads to QW on line with a defect

Significant amplitude is transmitted through!

Outline

- Quantum Walks
- DTQW \& CTQW
- Quantum Algorithms
- Search, Mixing, Hitting, \& Graph Traversal
- Connecting the quantum walks
- Relativistic Limits \& Other Approaches
- Applications Present and Future
- Algorithms, Implementations, Quantum State Transfer

Connecting QWs

DTQW (Discrete-Time QW)
$\psi_{R}(n, t+1)=\cos \theta \psi_{R}(n-1, t)-i \sin \theta \psi_{L}(n-1, t)$
$\psi_{L}(n, t+1)=\cos \theta \psi_{L}(n+1, t)-i \sin \theta \psi_{R}(n+1, t)$
$\theta=$ coin rotation angle
CTQW (Continuous-Time QW)
$i \partial_{t} \psi(n, t)=-\gamma[\psi(n-1, t)-2 \psi(n, t)+\psi(n+1, t)]$

- Can one get one from the other?
- What physics drives these walks?

Feynman Path Integral

- DTQW = Feynman's Checkerboard

- Feynman's Checkboard
= Dirac Equation
$i \hbar \partial_{t} \Psi=\left(-i \hbar c \vec{\alpha} \cdot \nabla+\beta m c^{2}\right) \Psi$
D. Meyer (I996)

Feynman's Proof

Figure 8 from "Feynman and the visualization of space-time processes", Silvan S. Schweber, Rev. Mod. Phys. 58, 499 (1986).

Feynman's Proof

Feynman knows his Bessel
Feynman (I946) functions!

Feynman's Proof

This is the DTQW!
Feynman (I946)

Relativistic Walks

- Can we use the Dirac equation to understand the DTQW?
- Yes, if we have some method to generate wave-packet solutions
- Look at wave-packet solutions of Dirac equation!
- (Use Momentum Space!)
- Compare with wave-packet solutions of DTQW
- (Use Momentum Space!)
- CTQW comes for free! FWs, Phys. Rev. A 73, 054302 (2006)

Dirac Wave-Packet

One-dimensional Dirac Hamiltonian:

$$
H_{\text {Dirac }}=\sigma_{z} p+\sigma_{x} m=\left(\begin{array}{cc}
p & m \\
m & -p
\end{array}\right), \quad \operatorname{eig}\left(H_{\text {Dirac }}\right)= \pm \sqrt{p^{2}+m^{2}}
$$

Dirac wave-packets

$$
\mathrm{a}=\text { localization parameter }
$$

$$
\begin{aligned}
\Psi_{ \pm}(x, t) & =N \int_{-\infty}^{+\infty} e^{-(a \pm i t) \sqrt{p^{2}+m^{2}}} e^{i p x}\left(I \pm \frac{H_{\text {Dirac }}}{\sqrt{p^{2}+m^{2}}}\right)\binom{1}{1} \\
& =N^{\prime}\binom{s_{ \pm}^{-1}(a \pm i(t+x)) K_{1}\left(m s_{ \pm}\right) \pm K_{0}\left(m s_{ \pm}\right)}{{s_{ \pm}^{-1}}^{-1}(a \pm i(t-x)) K_{1}\left(m s_{ \pm}\right) \pm K_{0}\left(m s_{ \pm}\right)}
\end{aligned}
$$

$$
s_{ \pm}=\sqrt{x^{2}+(a \pm i t)^{2}}
$$

Modified Bessel fxn

DTQW Wave-Packet

DTQW unitary mapping

$$
\begin{array}{ll}
U=e^{-i k \sigma_{z}} e^{-i \theta \sigma_{x}}=\left(\begin{array}{cc}
e^{-i k} \cos \theta & -i e^{-i k} \sin \theta \\
-i e^{i k} \sin \theta & e^{i k} \cos \theta
\end{array}\right), & e i g(U)=e^{ \pm i \omega(k)} \\
& \cos \omega(k)=\cos \theta \cos k
\end{array}
$$

DTQW "wave-packets" α = localization parameter

$$
\begin{aligned}
& \psi_{ \pm}(n, t)=N \int_{-\pi}^{+\pi} e^{-(\alpha \pm i t) \omega(k)} e^{i k n}\left(U-e^{ \pm i \omega(k)}\right)\binom{1}{1} d k \\
&=N^{\prime}\binom{I_{n}(\pm(t-1)-i \alpha)-e^{-i \theta} I_{n-1}(\pm t-i \alpha)}{I_{n}(\pm(t-1)-i \alpha)-e^{-i \theta} I_{n+1}(\pm t-i \alpha)} \\
& I_{n}(z)=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} e^{-i z \omega(k)} e^{i k n} d k \approx i^{n} e^{-i z \pi / 2} J_{n}(z \cos \theta), \cos \theta \ll 1
\end{aligned}
$$

Dirac

Relativistic Wave-Packet Spreading

Non-Relativistic Wave-Packet Spreading

Space

Slices

Dynamics governed by dispersion relations

$$
\begin{gathered}
\omega_{\text {DTQW }}=\cos ^{-1}(\cos \theta \cos p) \\
\omega_{\text {Dirac }}=\sqrt{p^{2}+m^{2}} \quad \omega_{\text {CTQW }}=2 \gamma(1-\cos p)
\end{gathered}
$$

Small θ

```
                                    0=\pi/10
```


Each has $d \omega / d p<c=$ maximum speed

Connecting the Quantum Walks

Introduce arbitrary coin parameter θ, take various continuum limits!

$$
\begin{array}{|l}
\psi_{R}(n, \tau+1)=\cos \theta \psi_{R}(n-1, \tau)-i \sin \theta \psi_{L}(n-1, \tau) \\
\psi_{L}(n, \tau+1)=\cos \theta \psi_{L}(n+1, \tau)-i \sin \theta \psi_{R}(n+1, \tau)
\end{array}
$$

FWS, Phys. Rev. A 74, 030301 (R) (2006)
FWS, J. Math. Phys., 48, 082102 (2007)
Classical Analogy: Simple Diffusion vs. Telegrapher's Equation

Connection for general graphs

- Childs (2008):
-Uses Szedegy's QW
-Hamiltonian simulation method

-QW "walks" on Hilbert space of dimension |G| ${ }^{2}$ (each state ~ edge of graph).
- D'Allesandro (2008):
-Controls QW by varying coin-flips.
-Lie theoretical proof of universal control
-QW on graphs of size |G|, coin flips of length log |G|

Outline

- Quantum Walks
-DTQW \& CTQW
- Quantum Algorithms
-Search, Mixing, Hitting, \& Graph Traversal
- Connecting the quantum walks
-Relativistic Limits \& Other Approaches
- Applications: Present and Future
-Algorithms, Implementations, Quantum State Transfer

Algorithms

- NAND Tree:

Properties of graph revealed by scattering Farhi, Goldstone, \& Guttman (2008)

- Graph Isomorphism

Properties of graph revealed by multiple walkers (Wang + others)

- Universality

ALL Q Computations can be written as a CTQW Childs (2008)

Encodings and Implementations

- Quantum Computer
-Graph vertices encoded in quantum bits
-Walks encoded by unitary logic gates
-Most efficient encoding has $\log _{2}|\mathrm{G}|$ qubits $=$ binary encoding
- Physical Network
-Graph vertices encoded in degrees of freedom (atom sites, electron sites, etc.)
-Walks encoded by natural Hamiltonian
-Most natural encoding has |G| qubits = unary encoding

QW Implementations

(not an exhaustive list)

Proposal	System	Walk	Encoding
W. Dür et al. (2002)	Optical Lattices	ID DTQW	Unary
B. C. Sanders et al. (2002)	Cavity-QED	ID DTQW	Unary/Binary
A. Romito et al. (2005)	Superconductors	ID CTQW	Unary
C.A. Ryan et al. (2005)	NMR exp	2D DTQW	Binary
J. M.Taylor (2007)	Quantum Dots	NAND CTQW	Unary
F. w. Strauch (2008)	Superconductors	Hypercube	Unary
Karski et al. (2009)	Optical Lattices	ID DTQW	Unary
Zähringer et al. (2010)	Ion Traps	ID DTQW	Unary
Broome et al. (2010)	Photons	ID DTSQW	Unary

Most proposals encode the walk using a unary representation.
Does this really demonstrate quantum computational speedup?
DTQW = Discrete-time quantum walk CTQW = Continuous-time quantum walk

Nature's Implementation? Photosynthesis

FMO Complex

LH2 Complex

Unary QW with disorder \& decoherence
M. Mohseni, P. Rebentrost, S. Lloyd, and A.Aspuru-Guzik,
J. Chem. Phys. I 29, I74I06 (2008)

Decoherence in the Hypercube Quantum Walk

Two "natural" models of decoherence for the hypercube:

- Subspace Model
- Each node is represented by a state of several qubits.
- Binary encoding with d qubits
- Dephasing occurs between subspaces of the hypercube.
- Useful model for quantum computer implementation of quantum walks.
G.Alagic and A. Russell,

Phys. Rev.A 72, 062304 (2005)

- Vertex Model
- Each node is represented by the excited state of one qubit.

Unary encoding with $\mathbf{2 d}^{\mathbf{d}}$ qubits

- Dephasing occurs between vertices of the hypercube.
- Useful model for quantum state transfer in qubit networks.

Decoherence in the Hypercube.

Quantum Walk

Lindblad Equation

$$
\frac{d \rho}{d t}=-i[H, \rho]-\sum_{j} \lambda_{j}\left(L_{j} \rho L_{j}^{+}-\frac{1}{2} L_{j}^{+} L_{j} \rho-\frac{1}{2} \rho L_{j}^{+} L_{j}\right)
$$

Dephasing leads to decay of off-diagonal elements of ρ

Subspace Model ($x=x_{1} x_{2} x_{3} x_{1} x_{5 . .}$)

$$
\frac{d \rho_{x, y}}{d t}=-i \sum_{z}\left(H_{x z} \rho_{z, y}-\rho_{x, z} H_{z y}\right)-\lambda \sum_{i}\left(1-\delta_{x, y,}\right) \rho_{x, y}
$$

Dephasing between different subspaces $\left(x_{j} \neq y_{i}\right)$

Vertex Model

$$
\frac{d \rho_{x, y}}{d t}=-i \sum_{z}\left(H_{x z} \rho_{z, y}-\rho_{x, z} H_{z y}\right)-\lambda\left(1-\delta_{x y}\right) \rho_{x, y}
$$

Dephasing between different vertices ($x \neq y$)

Comparison of Models

See F. W. Strauch, Phys. Rev.A 79, 0323 I9 (2009) for details

Decoherence in the vertex model has a hitting probability with a lower bound independent of the hypercube dimension \boldsymbol{d} ! Quantum speedup robust for unary encoding.

Quantum State Transfer

One can transfer the state of a single qubit from site A to site B using a set of permanently coupled qubits with Hamiltonian:

$$
H=-\frac{1}{2} \sum_{j} \hbar \omega_{j} \sigma_{j}^{z}+\sum_{j k} \hbar \Omega_{j k}\left(\sigma_{j}^{+} \sigma_{k}^{-}+\sigma_{k}^{+} \sigma_{j}^{-}\right)
$$

Dynamics of a single excitation (with $\omega=0$) maps onto the continuous-time quantum walk with $H=\hbar \Omega$, where the coupling matrix Ω is proportional to the adjacency matrix of the coupling graph. Certain choices of couplings such as the hypercube lead to perfect state transfer:

Hypercube State Transfer

- Each vertex represents a qubit. Quantum states travel along all paths simultaneously in superposition with full constructive interference, yielding perfect state transfer.

Superconducting Circuits

Artificial Atoms \rightarrow Artificial Molecules \rightarrow Artificial Solids

Qubits + Resonators

Phase Qubit

UC Santa Barbara

Perfect State Transfer with Phase

 Qubits- Programmable: Any two nodes can communicate by programming the qubit frequencies in the network.
- Parallel: Multiple quantum states can be transferred at the same time.
- Efficient: Transfer time is independent of the distance between nodes!
- High Fidelity: $\mathrm{F}>90 \%$ possible using existing technology, modest dimensions! Requires Study of Disorder and Decoherencen FWS and C.J.Williams, Phys. Rev. B 78, 0945 I 6 (2008)

C. Chudzicki and FWS, Phys. Rev. Lett. I05, 26050I (20I0)

Conclusions

- Quantum Walks are an exciting testbed for quantum information processing
- Connections have emerged between and but each has their own advantages (CTQW for studying physical networks, DTQW for computer algorithms)
- Search algorithms well developed---new algorithms on the way?
- Implementations require study of encoding, decoherence, and disorder. Understanding robustness may be the key.

