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Outline
! Superconducting Qubits & Resonators
! NOON States
! State-synthesis Algorithm

" JC Ladder => Fock-state Diagram
" Stark-shifted Rabi Oscillations
" NOON State Synthesis

! Quantum Routing of Entanglement on 
Oscillator Networks
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C Ib

• Quantum oscillator  
involving the 
superconducting current of 
billions of Cooper pairs.
• Spectroscopic transitions 
between energy levels can 
be probed by microwaves. 
• States are metastable, 
will tunnel through barrier.  
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"

100 µm

Supercurrent 
oscillates like a 

pendulum!

Phase Qubit
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4Sweep of  bias current allows experimental control of  energy levels.  

Tunable Oscillator
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Isolation
Qubit

50 µm

Sudeep Dutta et al. (Univ. Maryland) 

Hypres Inc. 

I (µ A)

f  (GHz)

Each microwave transition is an excitation of  the junction with an 
increased tunneling rate.  Bright indicates a large number of  
tunneling events, dark a small number of  events.

1 # 2

0 # 1

2 # 33 # 4

0 $ 21 $ 32 $ 4

Multi-Photon Spectroscopy

Tuesday, November 22, 2011



5

Isolation
Qubit

50 µm

Sudeep Dutta et al. (Univ. Maryland) 

Hypres Inc. 

I (µ A)

f  (GHz)

Each microwave transition is an excitation of  the junction with an 
increased tunneling rate.  Bright indicates a large number of  
tunneling events, dark a small number of  events.

1 # 2

0 # 1

2 # 33 # 4

0 $ 21 $ 32 $ 4
Single photon

Two photon

0 # 1

0 $ 2

Multi-Photon Spectroscopy

Tuesday, November 22, 2011



Coupling Qubits by Cavities

Qubit A

Qubit B

Resonator

“Coherent quantum state storage and transfer between two 
phase qubits via a resonant cavity”,  M. Sillanpaa, J. I. Park, and R. 
W. Simmonds, Nature 449, 438 (2007)
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Coupling Qubits by Cavities
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Qubit B
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Arbitrary Control of Resonator
! Martinis Group, UC Santa Barbara
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State-Synthesis Algorithm 

! Law & Eberly developed a scheme to 
program an arbitrary state of a single 
harmonic oscillator mode by coupling to 
a two-level system.

! Climbing Jaynes-Cummings Ladder one 
rung at a time. 8
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State-Synthesis Experiments
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Hofheinz et al., Nature 454 310 (2008) 

Hofheinz et al., Nature 459 546 (2009) 
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Big Question: Qubits or Resonators
! Is it better to use harmonic oscillators 

(resonators) or qubits for quantum 
computing?

! Common wisdom: It depends...
" Use qubit nonlinearity to encode 

information.
" Use oscillator coherence to store 

information.
" Use resonators to couple qubits.
" Use ? to readout information.
" Use ? to process information.

10
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Little Question:

Qubit Coupler

Resonator A

Resonator B

SchematicWhat control sequence is 
required to generate an 

arbitrary entangled state? 
(e.g. NOON states)
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
200 MHz for a qubit with ωq/(2π) = 6.5 GHz and res-
onators with ωa/(2π) = 6 GHz, ωb/(2π) = 7 GHz (simi-
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High NOON and Beyond

! Schrödinger Cat State
! Generalizes Bell/GHZ states
! Useful for metrology:

! May have applications for quantum state 
preparation, entanglement transfer and 
distribution, ...
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Jaynes-Cummings Ladder 
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Rabi pulses (R) drive qubit 
transitions (q=0 → 1)

Shift pulses (S) transfer quanta 
between qubit and oscillator.
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Used to generate arbitrary 
superpositions of Fock states:

Hofheinz et al., Nature 459, 
456 (2009)
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Two-Mode Jaynes Cummings

Qubit Coupler

Resonator A

Resonator B

Schematic
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is an integer (k = 0 is shown in Fig. ??). Note that
this choice requires ωa < ωq < ωb and |Ω| < g

2
a/(ωq −
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
200 MHz for a qubit with ωq/(2π) = 6.5 GHz and res-
onators with ωa/(2π) = 6 GHz, ωb/(2π) = 7 GHz (simi-
lar to recent experiments [? ]), we find Ω/(2π) ∼ 40 MHz
for the relevant Rabi frequency. Thus, we estimate that
NOON state generation using this protocol will take only
270 ns. This compares quite favorably to the coherence
times of both qubits and resonators, which are now con-
sistently greater than 0.5µs [? ? ? ].

TABLE I: NOON State Synthesis Procedure

Step Parameters State

Ra,1 Ωtqa,1 = π/2, ωd = ω0 |0, 0, 0� − i|1, 0, 0�
A1 gata,1 = π |0, 0, 0� − |0, 1, 0�
Ra,2 Ωtqa,2 = π, ωd = ω1 |0, 0, 0�+ i|1, 1, 0�
A2 gata,2 = π/

√
2 |0, 0, 0�+ |0, 2, 0�

Ra,3 Ωtqa,3 = π, ωd = ω2 |0, 0, 0� − i|1, 2, 0�
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Rb,2 Ωtqb,2 = π, ωd = ω−1 i|1, 0, 1� − |0, 3, 0�
B2 gbtb,2 = π/

√
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√
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Minimal Scheme
one qubit 
      (tunable frequency)
two resonators 
       (different frequencies)
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
200 MHz for a qubit with ωq/(2π) = 6.5 GHz and res-
onators with ωa/(2π) = 6 GHz, ωb/(2π) = 7 GHz (simi-
lar to recent experiments [? ]), we find Ω/(2π) ∼ 40 MHz
for the relevant Rabi frequency. Thus, we estimate that
NOON state generation using this protocol will take only
270 ns. This compares quite favorably to the coherence
times of both qubits and resonators, which are now con-
sistently greater than 0.5µs [? ? ? ].

TABLE I: NOON State Synthesis Procedure

Step Parameters State

Ra,1 Ωtqa,1 = π/2, ωd = ω0 |0, 0, 0� − i|1, 0, 0�
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For Fig. ?? we have set ∆ω = 2g
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a/(ωq − ωa) =

−2g
2

b/(ωq −ωb). This can always be achieved for a qubit
with a tunable frequency such as the phase or transmon
qubit. This allows us to simplify our Rabi pulses to fre-
quencies

ωk = ωq + k∆ω (7)

which selects those states with na − nb = k, where k

is an integer (k = 0 is shown in Fig. ??). Note that
this choice requires ωa < ωq < ωb and |Ω| < g

2
a/(ωq −

ωb). By choosing different values of k (or frequencies ωk)
one can address each of the “diagonals” of the Fock-state
diagram.
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
200 MHz for a qubit with ωq/(2π) = 6.5 GHz and res-
onators with ωa/(2π) = 6 GHz, ωb/(2π) = 7 GHz (simi-
lar to recent experiments [? ]), we find Ω/(2π) ∼ 40 MHz
for the relevant Rabi frequency. Thus, we estimate that
NOON state generation using this protocol will take only
270 ns. This compares quite favorably to the coherence
times of both qubits and resonators, which are now con-
sistently greater than 0.5µs [? ? ? ].
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Step Parameters State
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For Fig. ?? we have set ∆ω = 2g
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a/(ωq − ωa) =

−2g
2

b/(ωq −ωb). This can always be achieved for a qubit
with a tunable frequency such as the phase or transmon
qubit. This allows us to simplify our Rabi pulses to fre-
quencies

ωk = ωq + k∆ω (7)

which selects those states with na − nb = k, where k

is an integer (k = 0 is shown in Fig. ??). Note that
this choice requires ωa < ωq < ωb and |Ω| < g
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ωb). By choosing different values of k (or frequencies ωk)
one can address each of the “diagonals” of the Fock-state
diagram.
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
200 MHz for a qubit with ωq/(2π) = 6.5 GHz and res-
onators with ωa/(2π) = 6 GHz, ωb/(2π) = 7 GHz (simi-
lar to recent experiments [? ]), we find Ω/(2π) ∼ 40 MHz
for the relevant Rabi frequency. Thus, we estimate that
NOON state generation using this protocol will take only
270 ns. This compares quite favorably to the coherence
times of both qubits and resonators, which are now con-
sistently greater than 0.5µs [? ? ? ].

TABLE I: NOON State Synthesis Procedure

Step Parameters State

Ra,1 Ωtqa,1 = π/2, ωd = ω0 |0, 0, 0� − i|1, 0, 0�
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For Fig. ?? we have set ∆ω = 2g
2
a/(ωq − ωa) =

−2g
2

b/(ωq −ωb). This can always be achieved for a qubit
with a tunable frequency such as the phase or transmon
qubit. This allows us to simplify our Rabi pulses to fre-
quencies

ωk = ωq + k∆ω (7)

which selects those states with na − nb = k, where k

is an integer (k = 0 is shown in Fig. ??). Note that
this choice requires ωa < ωq < ωb and |Ω| < g

2
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ωb). By choosing different values of k (or frequencies ωk)
one can address each of the “diagonals” of the Fock-state
diagram.
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
200 MHz for a qubit with ωq/(2π) = 6.5 GHz and res-
onators with ωa/(2π) = 6 GHz, ωb/(2π) = 7 GHz (simi-
lar to recent experiments [? ]), we find Ω/(2π) ∼ 40 MHz
for the relevant Rabi frequency. Thus, we estimate that
NOON state generation using this protocol will take only
270 ns. This compares quite favorably to the coherence
times of both qubits and resonators, which are now con-
sistently greater than 0.5µs [? ? ? ].

TABLE I: NOON State Synthesis Procedure

Step Parameters State

Ra,1 Ωtqa,1 = π/2, ωd = ω0 |0, 0, 0� − i|1, 0, 0�
A1 gata,1 = π |0, 0, 0� − |0, 1, 0�
Ra,2 Ωtqa,2 = π, ωd = ω1 |0, 0, 0�+ i|1, 1, 0�
A2 gata,2 = π/
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2 |0, 0, 0�+ |0, 2, 0�

Ra,3 Ωtqa,3 = π, ωd = ω2 |0, 0, 0� − i|1, 2, 0�
A3 gata,3 = π/
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Rb,1 Ωtqb,1 = π, ωd = ω0 −i|1, 0, 0� − |0, 3, 0�
B1 gbtb,1 = π −|0, 0, 1� − |0, 3, 0�
Rb,2 Ωtqb,2 = π, ωd = ω−1 i|1, 0, 1� − |0, 3, 0�
B2 gbtb,2 = π/
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lar to recent experiments [? ]), we find Ω/(2π) ∼ 40 MHz
for the relevant Rabi frequency. Thus, we estimate that
NOON state generation using this protocol will take only
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
200 MHz for a qubit with ωq/(2π) = 6.5 GHz and res-
onators with ωa/(2π) = 6 GHz, ωb/(2π) = 7 GHz (simi-
lar to recent experiments [? ]), we find Ω/(2π) ∼ 40 MHz
for the relevant Rabi frequency. Thus, we estimate that
NOON state generation using this protocol will take only
270 ns. This compares quite favorably to the coherence
times of both qubits and resonators, which are now con-
sistently greater than 0.5µs [? ? ? ].
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
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for the relevant Rabi frequency. Thus, we estimate that
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sistently greater than 0.5µs [? ? ? ].
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
200 MHz for a qubit with ωq/(2π) = 6.5 GHz and res-
onators with ωa/(2π) = 6 GHz, ωb/(2π) = 7 GHz (simi-
lar to recent experiments [? ]), we find Ω/(2π) ∼ 40 MHz
for the relevant Rabi frequency. Thus, we estimate that
NOON state generation using this protocol will take only
270 ns. This compares quite favorably to the coherence
times of both qubits and resonators, which are now con-
sistently greater than 0.5µs [? ? ? ].
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
200 MHz for a qubit with ωq/(2π) = 6.5 GHz and res-
onators with ωa/(2π) = 6 GHz, ωb/(2π) = 7 GHz (simi-
lar to recent experiments [? ]), we find Ω/(2π) ∼ 40 MHz
for the relevant Rabi frequency. Thus, we estimate that
NOON state generation using this protocol will take only
270 ns. This compares quite favorably to the coherence
times of both qubits and resonators, which are now con-
sistently greater than 0.5µs [? ? ? ].
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
200 MHz for a qubit with ωq/(2π) = 6.5 GHz and res-
onators with ωa/(2π) = 6 GHz, ωb/(2π) = 7 GHz (simi-
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NOON State Example

! 

" =
1
2
3,0 + 0,3( )High NOON state:

J.P. Dowling, Contemp. 
Phys. 49, 125 (2008) 
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NOON State Synthesis

High NOON states are accessible using 
existing technology!

Main limitation is due
to Rabi frequency, to 
remain in Stark-shifted 
regime (can be optimized 
using pulse shapes).
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Using this result, and a coupling of ga/(2π) = gb/(2π) =
200 MHz for a qubit with ωq/(2π) = 6.5 GHz and res-
onators with ωa/(2π) = 6 GHz, ωb/(2π) = 7 GHz (simi-
lar to recent experiments [? ]), we find Ω/(2π) ∼ 40 MHz
for the relevant Rabi frequency. Thus, we estimate that
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sistently greater than 0.5µs [? ? ? ].
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Other Methods: Sidebands
! New transitions, new paths

! Probably slow... !/2" ~ 10 MHz
22
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Red + Blue Sidebands for 
each qubit

Flips qubit + photon

Requires two-photon 
process for transmons?
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Other Methods: Higher Levels
! |0>, |1>, |2>, ... to mediate interactions

! Less coherent? T12 < T01 

23
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resonator interactions.

Three types of Rabi 
oscillations.

More complex Stark shifts.
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Another Scheme

24

Qubit A Qubit B

Coupling 
Resonator

Resonator A Resonator B

Control Lines

Two qubits, three resonators.
Entanglement transferred from qubits to resonators.

Parallel Operations! 
General State Synthesis?

Martinis & Cleland
Merkel & Wilhelm 

arXiv: 1006.1336
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Many Applications
! High-dimensional states provide more efficient 

means to distribute entanglement (quantum 
routing)

! Higher-dimensional Bell inequalities (more 
settings, less locality?)

! State preparation of qubits by entangled 
resonators (ancillas, etc.)

! Quantum logic between resonators?
! Measuring entangled photon states?

! These and other issues under investigation
25

Tuesday, November 22, 2011



Quantum Routing
! Goal: Use a network of elements (qubits or 

resonators) to transfer quantum information.
! Programmable---send information between 

any two nodes.
! Parallel---information between different 

pairs of nodes can be sent at the same 
time.

! Ideally suited for entanglement 
distribution between distinct registers for 
teleportation, error detection, ancilla 
preparation, and other steps toward fault 
tolerance.

26
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Quantum State Transfer

d = 1
d = 2

d = 3 d = 4

One can transfer the state of a single qubit from site A to site B 
using a set of permanently coupled qubits with Hamiltonian: 

Dynamics of a single excitation (with ω = 0) maps onto a 
tight-bonding model with H = ħΩ , where the coupling 
matrix Ω is proportional to the adjacency matrix of the 
coupling graph.  Certain coupling schemes such as the 
hypercube  (M. Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)) 
lead to perfect state transfer:

27
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! Each vertex represents a qubit.  Quantum states 
travel along all paths simultaneously in 
superposition with full constructive interference, 
yielding perfect state transfer.

Hypercube State Transfer
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! Each vertex represents a qubit.  Quantum states 
travel along all paths simultaneously in 
superposition with full constructive interference, 
yielding perfect state transfer.

|&! = ' |0! +( |1! 

Hypercube State Transfer
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! Each vertex represents a qubit.  Quantum states 
travel along all paths simultaneously in 
superposition with full constructive interference, 
yielding perfect state transfer.
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Hypercube State Transfer
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•Circuits do not need to be 
simple two-dimensional 
layouts.  

•Multi-layer interconnects 
allow many crossovers and 
complex couplings.

1 2 3Phase Qubit Cube
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•Circuits do not need to be 
simple two-dimensional 
layouts.  

•Multi-layer interconnects 
allow many crossovers and 
complex couplings.

Courtesy Ray Simmonds, NIST Boulder

1 2 3Phase Qubit Cube
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Entanglement Distribution by 
Parallel Quantum State Transfer

! Study tunable resonators: exactly solvable!
! Split cube into M subcubes by frequency 

detuning.
! Send quantum states in parallel.

30

with Chris Chudzicki ‘10, Williams College

M = 1 M = 2 M = 4
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Parallel Transfer Fidelity

31

Text

M = # of “messages”

" = 2!0 /##

!0

M = 2
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Entanglement Distribution Rate
! Distribute entanglement between every pair 

of nodes (N total nodes).
! Send states one at a time on each subcube.
! Keep resonators in a fixed bandwidth
! The entanglement distribution rate scales as:

32
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Massively Parallel Distribution
! Send oscillators states between all 

corners simultaneously!

! Excitations are noninteracting bosons: 
multiple photons just pass through each 
other.

33
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Massively Parallel Rate

34

Various Bandwidths
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Conclusions
! Resonators are a powerful 

tool for quantum information: 
let’s use them!

! Developed state-synthesis 
algorithm for arbitrary 
entangled states 
" (NOON states very efficient)

! Quantum Routing with 
oscillator networks
" Massively Parallel using 

multiple excitations
35
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