Exercise 6

These computational exercises should be completed by **January 18** at **11:59AM**. Solutions should be turned in through the course website.

1. Advanced Plotting

Same as last time—although if you are interested in Matlab, enter demo at the prompt!

2. Random Walks

Use Mathematica (or your favorite language) to study the behavior of random walkers (in one or two dimensions). Here are a few things to try (

- Write a function that moves the walkers a variable number of steps using Module.
 Have the walkers' positions, step-size, and number of steps as variables for the function.
- Explore how the walk depends on the step-size, the number of walkers, and the number of steps.
- For the two-dimensional case, force each walker to move a fixed distance but in a random direction.
- Visualize the results using one of the visualization techniques such as ListDensityPlot and/or ListAnimate (it should look like the solution to the diffusion equation).

3. Partial Differential Equations

Use Mathematica to visualize the behavior of another partial differential equation. Here are some examples:

Diffusion with a Source:

$$\frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2} + f(x, t), \tag{1}$$

 $(\operatorname{try} f(x,t) = e^{-x^2} \sin \omega t).$

Reaction-Diffusion Equation ($\rho_1(x,t), \rho_2(x,t)$):

$$\frac{\partial \rho_1}{\partial t} = D_1 \frac{\partial^2 \rho_1}{\partial x^2} - \gamma_{12} (\rho_1 - \rho_2) \tag{2}$$

$$\frac{\partial \rho_2}{\partial t} = D_2 \frac{\partial^2 \rho_2}{\partial x^2} - \gamma_{12} (\rho_2 - \rho_1) \tag{3}$$

(4)

The Schrödinger Equation ($\Psi(x,t)$):

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V(x, t)\Psi. \tag{5}$$

Wave Equation with a Source $(\Psi(x,t))$:

$$\frac{\partial^2 \Psi}{\partial t^2} = \frac{\partial^2 \Psi}{\partial x^2} + f(x, t). \tag{6}$$

Feel free to try two-dimensional versions, with $\partial^2\Psi/\partial x^2\to\partial^2\Psi/\partial x^2+\partial^2\Psi/\partial y^2$.