Exercise 2

These computational exercises should be completed by January 8 at 11:59AM. Solutions should be turned in through the course website.

1. Cube Roots

Modify the square root program my_sqrt. py to calculate the cube root of a number. (Note: The update step requires some thought).

2. Square Root by Taylor Series

The function $\sqrt{1+x}$ has the following Taylor series

$$
\begin{equation*}
\sqrt{1+x}=\sum_{j=0}^{\infty} a_{j} x^{j} \tag{1}
\end{equation*}
$$

where $a_{0}=1, a_{1}=\frac{1}{2}$, and

$$
\begin{equation*}
a_{j+1}=-\left(\frac{2 j-1}{2 j+2}\right) a_{j} . \tag{2}
\end{equation*}
$$

Modify the exponential function exp3 to evaluate the square root of $y=1+x$ using this method. What happens when $x=1$? What about $x=-1$?

The problem, of course, is that the Taylor series does not converge for $|x| \geq 1$. One way to fix this is to use the identity

$$
\begin{equation*}
\sqrt{y}=n \sqrt{1+\frac{y-n^{2}}{n^{2}}} \tag{3}
\end{equation*}
$$

with an integer n such that $x=\left(y-n^{2}\right) / n^{2}$ is sufficiently small. Use this method to calculate $\sqrt{2}, \sqrt{10}$, and $\sqrt{15}$ using the Taylor series. How do the number of iterations compare using this method and the

3. Exponential Function by Scaling and Squaring

While the Taylor series of the exponential always converges, it still does a rather poor job of evaluating e^{x} when x is large. Use the identity $e^{x}=\left(e^{x / n}\right)^{n}$ to reduce the problem to evaluating e^{y} where $y=x / n$ is in the range $[0,1]$. Write a program that finds the integer n, evaluates $e^{x / n}$ using the Taylor expansion method, and finally calculates e^{x} by the product method. An optimal implementation uses $n=2^{m}$, and m squaring operations.

4. Challenges

- Write a code that evaluates the n-th root of any number by the Babylonian method.
- Write a code to evaluate the square root of any number by the Taylor series method.
- Use the series expansions of $\sin (x)$ and $\cos (x)$ to evaluate several values between 0 and 10 .
- Look up the series expansion of the inverse tangent. Use it to evaluate $\arctan (1)=$ $\pi / 4$.

