Exercise 1

These computational exercises should be completed by **January 6** at **11:59AM**. Solutions should be turned in through the course website.

1. Introduction to Python

Browse through the following tutorials: A Byte of Python, A Quick, Painless Tutorial on the Python Language, Python Programming, and the website www.python.org, or any of the other tutorials listed on the Blackboard website.

2. Reading and Writing your Name

We've seen how to get python to say "Hello World!". Write a program that prompts the user (you) to enter their name and favorite quality. Have the program output "Sir <name> the <quality>"

(E.g. "Sir Robin the Brave" or "Sir Guido the Pythonista").

3. Numerical Integration

One of the simplest tasks a scientific programmer may encounter is numerical integration. The general method is to replace the integral by a sum

$$\int_{a}^{b} f(x)dx \approx \sum_{j=1}^{N} w_j f(x_j), \tag{1}$$

where the points x_j and weights w_j are chosen to make the approximation as accurate as possible (we will discuss how to evaluate our choices in future sessions). The simplest method is the **rectangle method**, in which we let

$$x_j = a + \frac{b-a}{N}j \tag{2}$$

and

$$w_j = \frac{b-a}{N}.$$
(3)

Write a program that prompts the user to enter a, b, and N, and apply this method to f(x) = 1, f(x) = x, and $f(x) = x^2$. Test this program for several values of N (e.g. 10, 100, 1000) with a = 0 and b = 1. To evaluate the sum, use a for loop.

4. Challenges

- Modify your integration program to use the **trapezoidal rule** or **Simpson's rule**. For some ideas, check out the **Newton-Cotes Formulas** page at www.mathworld.com.
- Write a program that approximates the **derivative** of a function. For some ideas, check out the **Finite Difference** page at www.mathworld.com.