
VISUALIZING JULIA SETS

NATHAN A. SCHINE

ABSTRACT. Julia sets are one of the most widely known families of fractals. First
developed by Gaston Julia in the early 20th century, this family of fractals has many
different and beautiful exemplars. Beyond their aesthetic appeal, Julia sets stand apart
fromother fractals due to the extraordinarily simple method required to produce them.
Furthermore, the Julia sets are intimately related to the highly famous Mandelbrot set.
This paper demonstrates a method for producing Julia sets using Mathematica and then
quickly overviews their relationship with the Mandelbrot set.

CONTENTS

1. To Produce a Julia Set 1
1.1. Definition 1
1.2. A More Useful Description 1
1.3. An Example 2
2. Ideas into Code 2
2.1. First Ideas 2
2.2. First Successful Program 2
2.3. A Nice Output 4
3. Julia sets and Mandelbrot 6

1. TO PRODUCE A JULIA SET

1.1. Definition. The Julia set is defined as the set of all complex numbers, z, which are
bounded under repeated iteration of the complex quadratic polynomial

zn+1 = z2n + c (1.1)

1.2. A More Useful Description. Consider two complex planes: one in which a given
point is named c, and the other in which a given point is named z. Pick a value for
c. This parameter determines which Julia set will be produced. Now move to the sec-
ond complex plane. On every z value, apply the complex quadratic polynomial Equa-
tion.(1.1) lets say 100 times. For some z, the final value will be enormous; for others it
will be quite small. The Julia set is just the set of all z for which these final values are
small.

Date: January 26, 2010.
The author would like to thank Professor Frederick Strauch for teaching the coding language and

debugging the code. The author would also like to thank Julian Hess for his help reviewing the code and
offering suggestions.

1



2 NATHAN A. SCHINE

1.3. An Example.
• Pick c = 1
• Pick z = 1
• Apply Equation(1.1)

Output: 1, 1 + i, 3i,−9 + i, 80− 17i, 6111− 2719i, 29951360− 33231617i, ...
since this is not bounded, 1 + 0i is not in the Julia set.

• Pick another z. z = .5 + .25i
• Apply Equation(1.1)

Output:i,−1 + i,−i,−1 + i, i,−1 + i,−i,−1 + i, i, ...
since this is bounded, 0 + i is in the Julia set.

• Repeat for all points in the complex plane

2. IDEAS INTO CODE

2.1. First Ideas. The author first decided to use the Mathematica package for the vi-
sualization of the Julia sets. The author decided to make the entire program as one
or multiple defined functions that then would be called to produce the images. Three
primary functions identified as necessary to produce the images.

(1) Produce a matrix containing all complex points to be considered.
(2) Iteratively apply Equation(1.1) to a point.
(3) Apply function 2 to the complex plane produced by function 1 and isolate and

plot all points whose values are less than or equal to 2.
These ideas were successfully translated into Mathematica code as three Modules. The
program produced images of the points within the Julia set.

2.2. First Successful Program. The first program written that successfully produced
an image of a Julia set were direct applications of the above three functions. complex-
pts[] makes a matrix of the complex plane, juliapoint[] iteratively applies Equation(1.1)
to a point, and Julia[] applies juliapoint[] to the matrix produced by complexpts[] and
then plots the points appropriate points from the result.
complexpts[list1_, list2_] :=
Module[{L1 = list1, L2 = list2},
cpts = Table[0, {j, 1, Length[L2]}, {i, 1, Length[L1]}];
For[j = 1, j <= Length[L2], j++,
For[i = 1, i <= Length[L1], i++,
cpts[[j]][[i]] = L1[[i]] + I*L2[[j]]
]
]
]

juliapoint[z_, c_, n_] := Module[{ztemp = z},
For[k = 0, k < n, k++,
ztemp = ztemp^2 + c;
If[ztemp > 10^100,
Break[]
]
];
zfinal = ztemp
]



VISUALIZING JULIA SETS 3

Julia[creal_, cimaginary_, realextent_, realstep_, imaginaryextent_,
imaginarystep_] :=
Module[{cre = creal, cim = cimaginary,

reex = realextent, \[CapitalDelta]re = realstep,
imex = imaginaryextent, \[CapitalDelta]im = imaginarystep},
c = cre + I*cim;
reals = Range[-reex, reex, \[CapitalDelta]re];
imaginaries = Range[-imex, imex, \[CapitalDelta]im];
jtrue = Table[{0, 0}, {k, 1, Length[reals]*Length[imaginaries]}];
jvalues =
Table[{0, 0}, {j, 1, Length[imaginaries]}, {i, 1, Length[reals]}];
complexpts[reals, imaginaries];
jvalues = juliapoint[cpts, c, 40];
count = 1;
For[j = 1, j <= Length[imaginaries], j++,
For[i = 1, i <= Length[reals], i++,
If[Abs[jvalues[[j]][[i]]] <= 2,
jtrue[[count]] = {Re[cpts[[j]][[i]]], Im[cpts[[j]][[i]]] };
count += 1
]
]
];
ListPlot[jtrue, PlotStyle -> PointSize[0.001], Axes -> False,
Frame -> True, FrameLabel -> {"a", "b \[ImaginaryI]"},
GridLines -> Automatic, AspectRatio -> 1]
]

This program produced images like Figures First Attempt 1 and 2 below. While this
actually does create the desired image, it requires around at least 250,000 points per
square unit to make a reasonably nice image which shows multiple levels of branching
with relatively few disconnected points. The program also produces overflow errors;
the Break[] command in juliapoint[] does not work correctly. This causes the program
also to be relatively inefficient. It doesn’t actually need to iteratively evaluate any points
once zfinal is greater than 2. A better program could be written.

First Attempt c = .417− .355i

First Attempt c = −.04− .684i



4 NATHAN A. SCHINE

2.3. A Nice Output. The author wished to make a nicer and faster output than that
which was produced on the first attempt. Rather than just displaying the points which
were in the set, the new desire became to color all the points based on how quickly
they increased beyond 2. All the points that never did so would be colored similarly
and would be in the fractal; those points that did increase past two would produce
an interesting and complicated pattern of colors. This new goal, however, required
substantial revision of the code.

Mathematica allowed the author to evaluate juliapoint[cpts,c,40], where cpts is the
matrix containing all the complex points to be evaluated. Mathematica interpreted this
as evaluating juliapoint[] for each cell in the matrix and then putting the results into
another matrix of the same dimensions. This simplicity is not retained in the new code
since the goal is not simply to find the value of zfinal after a given number of iterations
and then test if it is less than or equal to 2. Rather, the program must output when zfinal
surpasses 2. This leads to the incorporation and modification of juliapoint[] directly
into the the code of Julia[]

The second program:

complexpts[list1_, list2_] :=
Module[{L1 = list1, L2 = list2},
cpts = Table[0, {j, 1, Length[L2]}, {i, 1, Length[L1]}];
For[j = 1, j <= Length[L2], j++,
For[i = 1, i <= Length[L1], i++,
cpts[[j]][[i]] = L1[[i]] + I*L2[[j]]
]
]
]

Julia[creal_, cimaginary_, realextent_, realstep_, imaginaryextent_,
imaginarystep_, centerpointreal_, centerpointimaginary_] :=
Module[{cre = creal, cim = cimaginary,

reex = realextent, \[CapitalDelta]re = realstep,
imex = imaginaryextent, \[CapitalDelta]im = imaginarystep,
recpt = centerpointreal, imcpt = centerpointimaginary},
c = cre + I*cim;
reals = Range[recpt - reex, recpt + reex, \[CapitalDelta]re];
imaginaries = Range[imcpt - imex, imcpt + imex, \[CapitalDelta]im];
jvalues =
Table[0, {j, 1, Length[imaginaries]}, {i, 1, Length[reals]}];
complexpts[reals, imaginaries];
For[j = 1, j <= Length[imaginaries], j++,
For[i = 1, i <= Length[reals], i++,
zfinal = cpts[[j]][[i]];
For[k = 1, k <= 100, k++,
If[Abs[zfinal] >= 2,
jvalues[[j]][[i]] = (k - 1);
Break[]
];
If[k == 40 \[And] Abs[zfinal] < 2,
jvalues[[j]][[i]] = 100
];
zfinal = zfinal^2 + c
]
]
];
ArrayPlot[jvalues, ColorFunction -> ColorData["DeepSeaColors"]]
]



VISUALIZING JULIA SETS 5

This program successfully creates a much nicer output without any error messages.
The color scheme is arbitrary; the author picked “Deep Sea Colors” because it looked
neat. Some of the produced images are included below.

Nice Output c = .417− .355i

Nice Output c = −.7

Nice Output c = −1 + .3i

Blow-up of c = −1 + .3i centered at (.9, 0)



6 NATHAN A. SCHINE

Nice Output c = i

3. JULIA SETS AND MANDELBROT

Julia sets and the Mandelbrot set are intimately related. They are defined in analo-
gous ways and have many shared properties. Specific regions of Julia sets even look
almost identical to the Mandelbrot Set. The Mandelbrot set can defined as the set of
all c such that the Julia set for that parameter c is completely continuous. This means
that for any c outside the Mandelbrot set, the Julia set is scattered, sometimes with well
defined but separated lobes, more often just with disconnected points. These sets are
sometimes refered to as Julia dust. The most common definition of the Mandelbrot set
is just an inversion of the definition of the Julia set:

Take the complex quadratic polynomial Equation(1.1) and let z0 = 0. Then, a point
c is in the Mandelbrot set if Equation.(1.1) yields a bounded result. Basically, the roles
of z and c are reversed, with z always equal to 0.

Only a very slight manipulation of the previous code is needed to produce the Man-
delbrot set:

complexpts[list1_, list2_] :=
Module[{L1 = list1, L2 = list2},
cpts = Table[0, {j, 1, Length[L2]}, {i, 1, Length[L1]}];
For[j = 1, j <= Length[L2], j++,
For[i = 1, i <= Length[L1], i++,
cpts[[j]][[i]] = L1[[i]] + I*L2[[j]]
]
]
]

mandelbrot[realextent_, realstep_, imaginaryextent_, imaginarystep_,
centerpointreal_, centerpointimaginary_] :=
Module[{reex = realextent, \[CapitalDelta]re = realstep,

imex = imaginaryextent, \[CapitalDelta]im = imaginarystep,
recpt = centerpointreal, imcpt = centerpointimaginary},
reals = Range[recpt - reex, recpt + reex, \[CapitalDelta]re];
imaginaries = Range[imcpt - imex, imcpt + imex, \[CapitalDelta]im];
jvalues =
Table[0, {j, 1, Length[imaginaries]}, {i, 1, Length[reals]}];
complexpts[reals, imaginaries];
For[j = 1, j <= Length[imaginaries], j++,
For[i = 1, i <= Length[reals], i++,
c = cpts[[j]][[i]];



VISUALIZING JULIA SETS 7

zfinal = 0;
For[k = 1, k <= 100, k++,
If[Abs[zfinal] >= 2,
jvalues[[j]][[i]] = (k - 1);
Break[]
];
If[k == 40 \[And] Abs[zfinal] < 2,
jvalues[[j]][[i]] = 100
];
zfinal = zfinal^2 + c
]
]
];
ArrayPlot[jvalues, ColorFunction -> ColorData["DeepSeaColors"]]
]

The familiar output of this code is included below:

Mandelbrot Set


