
Physics 142 Literature assignment # 3
Optical Clocks and Relativity

1 Getting started...

This week’s paper:

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,”
Science 329, 1630 (2010) https://www.science.org/doi/10.1126/science.1192720.

1. As usual, start by reading the title, abstract, and introduction, and locate the “in this
paper” sentence/paragraph. In your own words, what is this paper about?

2 Background

How do you build a clock? Essentially, you need some process that is periodic, i.e. that
repeats itself identically—think, for example, of an old-fashioned pendulum clock. In class
this week, we have learned that atoms give off light at characteristic frequencies as they
transition from higher to lower energy internal states. The frequencies of these transitions
can be used for timekeeping—in other words, each period of the emitted light corresponds
to a “tick” in the clock.

In fact, since 1967, the S.I. second has been defined as exactly 9 192 631 770 times one period
of oscillation corresponding to a specific transition in the cesium-133 atom.

In this week’s paper, the “optical” clocks use a transition in a trapped aluminum ion. These
are actually more accurate than the clocks used to define the second. (This might seem a bit
strange, but since the authors are comparing two clocks of the same type to each other, it
works out). Here, the term optical refers to the frequency of the atomic transition, which is
much higher than the cesium ground-state hyperfine transition used in the current definition
of the second.

The ion is held in an ion trap so that its motion is minimized to avoid Doppler shifts.
Rather than measuring the frequency of light emitted by the ion, the researchers compare
the frequency of a reference laser against the transition frequency by checking if the ion can
absorb light from the laser.

As it turns out, the aluminum ion has a very good transition to use as a “clock”—one of
the required properties is that the transition have a narrow “natural linewidth” (more on
this below). Atomic transition frequencies can be slightly affected by the presence of electric
and magnetic fields, so a good choice of transition is one that is comparatively insensitive
to these.

Unfortunately, the aluminum ions don’t have good atomic transitions for laser-cooling or
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for checking whether the ion absorbed light on the “clock” transition. The clock design
circumvents this by using a second ion that is trapped along with the aluminum ion. This
partner ion has good properties for laser cooling and readout; the Coulomb (electric) force
between the two ions allows the aluminum ion to be cooled as the partner ion is cooled,
and it also allows information about the aluminum ion’s state to be “imprinted” on the
partner.1 These techniques are borrowed from quantum computing experiments, so this
clock is sometimes called a “quantum logic clock.”

3 Time-dilation due to motion

A Paul trap (or “quadrupole ion trap”) is used to trap the ions.2 There is a theorem in
electrostatics (called the Earnshaw theorem) that says that static electric fields alone can’t
trap a charged particle in empty space—you can’t make the fields all point inwards in the
vicinity at a point, there will always be some directions where they point outwards.3 Paul
traps circumvent this by using time-varying potentials. The potential at any moment in time
is a saddle potential, but if it either rotates or oscillates at the right frequency, it can trap
a charged particle.

→ This is intuitive once you see it in action—check out the following videos:

(Rotating saddle potential) https://www.youtube.com/watch?v=XTJznUkAmIY&t=8s

(Oscillating saddle potential) https://www.youtube.com/watch?v=wlmJ5goHd3g

The videos all show trapping in two dimensions; the ion is trapped in the third dimension
as well, using DC electric fields.

This is what the geometry looks like: the saddle potential is formed by the four blade-like
electrodes, and the end-caps provide the DC electric field. This picture shows a row of ions
in the trap, with one interacting with a laser beam. (In the experiment we’re reading about,
however, I’m pretty sure they work with just one aluminum and one beryllium ion).

1For a summary of some recent improvements to Aluminum ion clocks, see https://physics.aps.org/
articles/v12/79.

2Prof. Charlie Doret uses Paul traps for his research.
3Why doesn’t the Earnshaw theorem apply to the Penning trap?
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(Image reproduced from A. M. Eltony et al., “Technologies for trapped-ion quantum infor-
mation systems,” Quantum Information Processing (2016))4

In theory, the ion can be perfectly still at the center of the trap. But, you may have noticed
that the “ions” in the videos are not actually perfectly still. If the ion sits off-center, it is
still trapped, but it undergoes small oscillations, driven by the oscillating electric field.

Normally, oscillations like this would be bad for clock performance, but they are introduced
on purpose in the first part of the experiment.

4 Gravitational time dilation

This one is really easy (at least conceptually)—they just changed the height of one of the
clocks.

Here’s a picture of the clock that has been raised 33 cm—note that optical tables weigh
∼about a ton.

4http://dx.doi.org/10.1007/s11128-016-1298-8, distributed under a Creative Commons license:
Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
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5 Figures and data

Locate the figures 2 and 3, showing the two time-dilation effects measured here. Take a
moment to read the captions and examine them carefully.

2. For each figure, explain in your own words what the two parts of the figure show. What
quantities are plotted in the graphs?

In figure 2, the x-axis uses vrms. “rms” stands for “root mean squared”, which means exactly
that—take the average of the square of a quantity and then take the square root.

In this case, the velocity of the ion is oscillating sinusoidally, i.e.

v(t) = vm cos(ωt), (1)

where vm is the maximum velocity, and ω = 2πfosc.

Recall from calculus that you can take the average of a function f(x) for x1 < x < x2 using
an integral:

〈f(x)〉 =

� x2

x1
f(x)dx

x2 − x1
(2)

When we average periodic functions, like v(t) above, we always average over an integer
number of periods (another way of looking at this is that we average over a large number of
periods, so that the contribution of one partial period is negligible). Notice that the average
of cos2 or sin2 over many periods is 1/2.

Clearly, 〈v(t)〉 = 0. However, v(t)2 is always greater than or equal to zero and has a non-
negative average.

3. Show that

〈(v(t))2〉 =
v2m
2

(3)

The rms velocity is just the square root of this average: vrms =
√
〈(v(t))2〉 = vm/

√
2.

Getting back to the time-dilation figure...

We are comparing two clocks—one that is at rest in the lab, the other is moving (the ion is
a clock).

Let δt0 be the time between two ticks of the clock in its rest frame. Then the time measured
in the lab (between two ticks of that clock) is δtlab = γδt0.

Now, γ is changing with time, because the moving clock is moving back and forth... but on
average,

〈δtlab〉 = 〈γδt0〉 = 〈γ〉δt0 (4)
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(I could take the δt0 out of the average in the last step because δt0, the time between ticks
in the clock’s rest frame, is always the same!).

It follows that the frequency of the moving clock, as measured in the lab, is

flab =
1

〈δtlab〉
=

1

〈γ〉δt0
=

f0
〈γ〉

, (5)

where f0 is the frequency of the clock in its rest frame. How to get the average value of γ?
(First—sanity check—since γ ≥ 1, 〈γ〉 is also always greater than 1. Does the time dilation
make sense as described?).

Check out the values of vrms in figure 2, and convince yourself that at any given time, v � c.

We can therefore do a Taylor approximation before computing the average of γ.

4. Use the above to derive and explain the shape of the curve in Figure 2.

Further questions:

5. Why do you think the first yellow band thinner than the second yellow band in figure
3?

6. Read (or at least skim) the paper in its entirety. What systematic effect(s) do they
discuss, and how did they address them?

6 Relative uncertainties, and converting uncertainty in

frequency to uncertainty in period

Random question, which is a warm-up to the actual question:

Suppose you have two clocks: one has frequency f0, and the other has frequency f1 =
f0 + δf = f0(1 + ε) where ε ≡ δf/f0.

Presumably, the second clock has a slightly shorter period than the first: The first clock’s
period is T0 = 1/f0, and the second clock’s period is T1 = 1/f1, and I posit that T1 = T0−δT .
Given f0 and δf , what is δT?

7. The first full paragraph on p. 1631 describes the accuracy of the clocks used in the
paper and provides their systematic uncertainties as relative uncertainties (i.e., for
center frequency f0 and uncertainty δf , the relative uncertainty is δf/f0). A NIST
press release in 20085 described the aluminum clock as so accurate it would neither
gain nor lose a second in more than a billion years. How do the reported systematic
uncertainties compare with the description in the press release (i.e., is the statement
in the press release justified)?

5https://www.nist.gov/news-events/news/2008/03/nist-quantum-logic-clock-rivals-mercury-ion-worlds-
most-accurate-clock-0
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