
Optional Exercises
with Solutions in SAS and R

Short Course on Modeling Ordinal Categorical Data

Bernhard Klingenberg

1. Consider the mental impairment data analyzed in the course, which are available at
http://sites.williams.edu/bklingen/ordinal.

a. Using your choice of software, fit the cumulative logit model discussed in the notes.

b. Conduct a likelihood-ratio or Wald test about the life events effect, and interpret.

c. Construct a confidence interval for a cumulative odds ratio to interpret the life events
effect.

d. Now fit the more general model that allows interaction between life events and SES
in their effects on mental impairment. Interpret the nature of the interaction.

e. Test whether the interaction effect is needed in the model. Interpret.

f. Plot the estimated cumulative logits, cumulative probabilities and category probabil-
ities against the life score for each SES category.

2. Table 1 from a study of the efficacy of seat-belt use in auto accidents has the response
categories (1) not injured, (2) injured but not transported by emergency medical services,
(3) injured and transported by emergency medical services but not hospitalized, (4) injured
and hospitalized but did not die, and (5) injured and died. Table 2 shows output for a
cumulative logit model, using indicator variables for predictors, that allows the effect of
seat-belt use to vary by location.

a. Why are there four intercepts? Explain how they determine the estimated response
distribution for males in urban areas wearing seat belts.

b. Estimate and interpret the cumulative odds ratio that describes the effect of gender,
given seat-belt use and location. (Since gender does not occur in an interaction term,
it is valid to estimate this “main effect.”) Construct a 95% confidence interval for the
effect, and interpret.

c. Find the estimated cumulative odds ratio between the response and seat-belt use for
those in rural locations and for those in urban locations, given gender. Based on this,
explain how the effect of seat-belt use varies by location, and explain how to interpret
the interaction estimate.

3. Analyze the family income and happiness data mentioned in the notes, treating family
income as quantitative with scores (3, 2, 1).

a. Fit a cumulative logit model and interpret the income effect estimate.
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b. Now treat income as a qualitative factor instead of a quantitative predictor with scores.
Interpret the effects. Analyze whether a significantly improved fit results from treating
income as a qualitative factor.

c. Plot the models in 3a and 3b on the logit scale. If possible, include the sample
cumulative logits in your plot to check the fit of the model. Also plot the fitted
cumulative and category probabilities for the model in part a.

d. Fit a model that allows non-proportional odds (treating income as quantitative) and
plot it. Check if the proportional odds assumption is reasonable.

e. Test goodness of fit for the proportional odds model when treating income as quan-
titative. (This shows some lack of fit, but note the large sample size. Note how the
plots in 3c show a good fit to the sample logits.)

f. Fit an adjacent-categories logit model analog of the model in (a), and interpret the
income effect estimate. Compare the fitted values to those for the cumulative logit
model in (a), and note how similar they are. These two models describe similar
behavior (e.g., stochastically ordered distributions, varying in location rather than
dispersion) and fit well in similar situations.

4. Fit a continuation-ratio logit model to the happiness and income data on p. 11 of the notes.
Interpret results. (You might note that you’ll get different results if you reverse the order
of response categories to which you apply the continuation-ratio logits.)

5. Fitting the cumulative probit model (using R) to the happiness and income data, using
scores (3, 2, 1) for the income levels, gives results

Coefficients:

Value Std. Error t value

income 0.3634578 0.02988844 12.16048

Intercepts:

Value Std. Error t value

1|2 -0.4681 0.0607 -7.7115

2|3 1.2067 0.0632 19.0893

Residual Deviance: 5487.385

AIC: 5493.385

a. See if you replicate the output and interpret the effect estimate of income (i.e., 0.363).

b. The corresponding cumulative logit model gives results

Coefficients:

Value Std. Error t value

income 0.6310666 0.0523753 12.04894

Intercepts:

Value Std. Error t value

1|2 -0.7613 0.1057 -7.1992

2|3 2.0461 0.1122 18.2428

2



Table 1: Data for Exercise on Degree of Injury in Auto Accident
Response on Injury Outcome

Gender Location Seat Belt 1 2 3 4 5
Female Urban No 7,287 175 720 91 10

Yes 11,587 126 577 48 8
Rural No 3,246 73 710 159 31

Yes 6,134 94 564 82 17

Male Urban No 10,381 136 566 96 14
Yes 10,969 83 259 37 1

Rural No 6,123 141 710 188 45
Yes 6,693 74 353 74 12

Table 2: Output for Exercise on Auto Accident Injuries
Parameter DF Estimate Std Error

Intercept1 1 3.3074 0.0351

Intercept2 1 3.4818 0.0355

Intercept3 1 5.3494 0.0470

Intercept4 1 7.2563 0.0914

gender female 1 −0.5463 0.0272

gender male 0 0.0000 0.0000

location rural 1 −0.6988 0.0424

location urban 0 0.0000 0.0000

seatbelt no 1 −0.7602 0.0393

seatbelt yes 0 0.0000 0.0000

location∗seatbelt rural no 1 −0.1244 0.0548

location∗seatbelt rural yes 0 0.0000 0.0000

location∗seatbelt urban no 0 0.0000 0.0000

location∗seatbelt urban yes 0 0.0000 0.0000

Residual Deviance: 5487.699

AIC: 5493.699

Interpret the income effect (0.631), and compare substantive results to those for the
cumulative probit model.

c. Plot the fitted cumulative probabilities in terms of income for the logit and probit
model.
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Solutions to Exercises using SAS 
 

Exercise 1: Cumulative Logit model for mental impairment data: 
 
SAS code (using proc genmod): 
1a) 
data mental; 

input impair ses life; 

datalines; 

1 1 1 

1 1 9 

1 1 4 

1 1 3 

1 0 2 

... 

4 0 8 

4 0 9 

; 

proc genmod data=mental; 

model impair = life ses / dist=multinomial link=clogit type3 aggregate; 

run; 

 

Selected Output: 

                              Criteria For Assessing Goodness Of Fit 

 

                 Criterion                     DF           Value        Value/DF 
 

                 Log Likelihood                          -49.5489 

 

                        Analysis Of Maximum Likelihood Parameter Estimates 

 

                                   Standard    Likelihood Ratio 95%          Wald 

   Parameter     DF    Estimate       Error      Confidence Limits     Chi-Square    Pr > ChiSq 
 

   Intercept1     1     -0.2819      0.6423     -1.5615      0.9839          0.19        0.6607 

   Intercept2     1      1.2128      0.6607     -0.0507      2.5656          3.37        0.0664 

   Intercept3     1      2.2094      0.7210      0.8590      3.7123          9.39        0.0022 

   life           1     -0.3189      0.1210     -0.5718     -0.0920          6.95        0.0084 

   ses            1      1.1112      0.6109     -0.0641      2.3471          3.31        0.0689 

 

                                LR Statistics For Type 3 Analysis 

 

                                                      Chi- 

                          Source             DF     Square    Pr > ChiSq 
 

                          life                1       7.78        0.0053 

                          ses                 1       3.43        0.0641 

 

1b) Likelihood Ratio (LR) test for H0: 1 = 0 vs H1: 1 ≠ 0 (coefficient for life): LR statistic = 7.78 on df = 1: P-value = 0.0053. 
The data provide evidence (P-value = 0.0053) of a significant effect of the number of life events on the cumulative log-
odds of mental impairment.  (Wald Statistic in Chi-square form: (-0.3189/0.1210)^2 = 6.95, df = 1: P-value = 0.0084.) 
 
Interpretation of effect: For both low and high SES adults, the odds of a mental impairment score less than or equal to j 
(instead of greater than j) decrease by a factor of exp(-0.3189) = 0.73 for every unit increase in the life event score. This is 
true for all j (proportional odds assumption). For instance, when j = 1 = ”well”, the estimated odds of feeling well 
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decrease by a factor of 0.73 for every unit increase in life events. When j = 2, the odds of feeling well or showing mild 
symptoms of mental impairment (versus moderate symptoms or mental impairment) decrease by a factor of 0.73 for 
every unit increase in the life event score. 
     

1c) 95% Likelihood Ratio confidence interval for 1: [-0.572;-0.092] (from lrci option). exp([-0.572;-0.092]) = 
[0.564;0.912]. 
We are 95% confident that the odds of mental impairment below any level j decrease by a factor of at least 0.91 and at 
most 0.56 for every unit increase in the life event score. (For Wald interval, leave out option lrci.) 
 
1d) 
proc genmod data=mental; 

model impair = life ses life*ses / dist=multinomial link=clogit lrci type3; 

run; 
 

                       Analysis Of Maximum Likelihood Parameter Estimates 

 

                                   Standard    Likelihood Ratio 95%          Wald 

   Parameter     DF    Estimate       Error      Confidence Limits     Chi-Square    Pr > ChiSq 
 

   life           1     -0.4204      0.1864     -0.8379     -0.0828          5.09        0.0241 

   ses            1      0.3709      1.1361     -1.8745      2.6318          0.11        0.7441 

   life*ses       1      0.1813      0.2383     -0.2761      0.6778          0.58        0.4468 

 

 

                                LR Statistics For Type 3 Analysis 

 

                                                      Chi- 

                          Source             DF     Square    Pr > ChiSq 
 

                          life*ses            1       0.59        0.4411 

 
Interpretation: The decrease in the estimated cumulative odds of mental impairment below any level is stronger for 
those adults with low socioeconomic status (ses=0) than for those with high socioeconomic status (ses=1). In particular, 
for adults with low SES, the estimated cumulative odds decrease by a factor of exp(-0.4202) = 0.66 for every unit increase 
in the life events score, compared to a decrease of exp(-0.4204 + 0.1813) = 0.79 for those of high SES. 
 
1e)   However, the coefficient for the interaction term (estimate = 0.1813, SE = 0.238) is not significant. Likelihood ratio 
test statistic = 0.59, df = 1: P-value = 0.441. The decrease in the estimated odds can be considered the same for both high 
and low SES.  
 

 
 
Exercise 2: Auto Accidents Injuries: 
 
SAS code (using proc genmod): 
data accidents; 

input gender$ location$ seatbelt$ y1-y5; 

resp=1; count=y1; output; 

resp=2; count=y2; output; 

resp=3; count=y3; output; 

resp=4; count=y4; output; 

resp=5; count=y5; output; 

drop y1-y5; 

datalines; 
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female urban no 7287 175 720 91 10 

female urban yes 11587 126 577 48 8 

female rural no 3246 73 710 159 31 

female rural yes 6134 94 564 82 17 

male urban no 10381 136 566 96 14 

male urban yes 10969 83 259 37 1 

male rural no 6123 141 710 188 45 

male rural yes 6693 74 353 74 12 

; 

proc genmod data=accidents; 

class gender location seatbelt; 

model resp = gender location seatbelt location*seatbelt/ dist=multinomial link=clogit lrci 

type3; 

freq count; 

run; 

 

Selected Output: 

                        Analysis Of Maximum Likelihood Parameter Estimates 

 

                                                         Likelihood Ratio 

                                              Standard    95% Confidence          Wald 

Parameter                       DF  Estimate     Error        Limits        Chi-Square  Pr > ChiSq 
 

Intercept1                       1    3.3074    0.0351    3.2392    3.3767     8894.46      <.0001 

Intercept2                       1    3.4818    0.0355    3.4127    3.5520     9603.94      <.0001 

Intercept3                       1    5.3494    0.0470    5.2580    5.4420     12978.6      <.0001 

Intercept4                       1    7.2563    0.0914    7.0811    7.4398     6296.51      <.0001 

gender             female        1   -0.5463    0.0272   -0.5997   -0.4929      401.92      <.0001 

gender             male          0    0.0000    0.0000    0.0000    0.0000         .         . 

location           rural         1   -0.6988    0.0424   -0.7819   -0.6159      272.15      <.0001 

location           urban         0    0.0000    0.0000    0.0000    0.0000         .         . 

seatbelt           no            1   -0.7602    0.0393   -0.8374   -0.6833      374.14      <.0001 

seatbelt           yes           0    0.0000    0.0000    0.0000    0.0000         .         . 

location*seatbelt  rural   no    1   -0.1244    0.0548   -0.2318   -0.0170        5.16      0.0232 

location*seatbelt  rural   yes   0    0.0000    0.0000    0.0000    0.0000         .         . 

location*seatbelt  urban   no    0    0.0000    0.0000    0.0000    0.0000         .         . 

location*seatbelt  urban   yes   0    0.0000    0.0000    0.0000    0.0000         .         . 

 

 

                                LR Statistics For Type 3 Analysis 

 

                                                         Chi- 

                       Source                   DF     Square    Pr > ChiSq 
 

                       gender                    1     406.33        <.0001 

                       location                  1     763.96        <.0001 

                       seatbelt                  1     917.46        <.0001 

                       location*seatbelt         1       5.15        0.0232 

 
2a) The response variable is ordinal with 5 categories. Therefore, we model the odds of 4 cumulative probabilities, where 

each model has its own intercept parameter (1 <2 <3 <4).  
For males in urban areas wearing seat belts, all dummy variables equal 0 and the estimated cumulative probabilities are 
exp(3.3074)/[1 + exp(3.3074)] = 0.965, exp(3.4818)/[1 + exp(3.4818)] = 0.970, exp(5.3494)/[1 + exp(5.3494)] = 0.995, 
exp(7.2563)/[1 + exp(7.2563)] = 0.9993, and 1.0. The corresponding response probabilities are 0.965, 0.005, 0.025, 0.004, 
and 0.0007. 
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2b) Cumulative log-odds for female drivers  Cumulative log-odds for male drivers  = 1 (for any location and seatbelt 
use).  
For given location and seatbelt use, the estimated cumulative odds of the extent of injury being less than or equal to j for 
females are exp(-0.5463) = 0.58 times the ones for males. I.e., for given location and seatbelt use, the estimated 
cumulative odds of the extent of injury below any level are 0.58 times smaller for males than for females. For instance, if j 
= 2, the estimated cumulative odds of not being injured or being injured but not transported by emergency medical 
services are 0.58 times smaller for males than for females. Females, more so than males, tend to fall on the lower end of 
the response scale. The P-value for a likelihood ratio test for this parameter is less than 0.0001.    
A 95% profile likelihood confidence interval for the difference in the estimated cumulative log-odds for females versus 
males is given by [-0.5997;-0.4929 ]. exp([-0.5997;-0.4929 ]) = [0.549; 0.611]. Hence, the estimated cumulative odds for 
females are at most 0.549 and at least 0.611 times smaller for females compared to males.            
 

2c) For any gender and rural location: Cumulative log odds for those using seat belt  Cumulative log-odds for those not 

using seat belt =  (3 + 4). For those in rural locations, the estimated cumulative odds of the extent of the injury being 

less than or equal to j are exp{ (0.760220.1244)} =  2.42 times larger for those using seatbelts than those not using a 
seat belt. Hence, the probability of an extent of injury less than or equal to j are larger for those using seat belts, i.e., they 
are more likely to fall on the low end of the response scale, where the severity of the injury is not so dramatic. 

For any gender and urban location: estimated cumulative log odds for those using seat belt  estimated cumulative log-

odds for those not using seat belt = 3. For those in urban locations, the estimated cumulative odds of the extent of the 

injury being less than or equal to j are exp{ (0.76022)} =  2.14 times larger for those using a seatbelt than those not 
using a seat belt. Hence, the probability of an extent of injury less than or equal to j are larger for those using seat belts, 
i.e., they are more likely to fall on the low end of the response scale, where the severity of the injury is not so dramatic.  
 
Note that the estimated cumulative odds ratio in urban locations is smaller by a factor of exp(-0.1244) = 0.88  compared 
to rural locations. I.e., the effect of seat belt use on the odds of the extent of the injury is more pronounced in rural 
compared to urban locations. This effect is statistically significant (likelihood ratio P-value = 0.0232) but in practice the 
two estimates of 2.42 for rural and 2.14 for urban locations are very similar.    
 

 

 

Exercise 3: Happiness and Family Income: 
 
SAS code (using proc genmod): 
 

data happy; 

input Income Happiness$ count; 

datalines; 

3 Very 272 

3 Pretty 294 

3 Not 49 

2 Very 454 

2 Pretty 835 

2 Not 131 

1 Very 185 

1 Pretty 527 

1 Not 208 

; 

proc genmod data=happy descending; 

model Happiness = Income / dist=multinomial link=clogit lrci type3; 

freq count; 

run; 
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                                         Response Profile 
 

                                 Ordered                     Total 

                                   Value    Happiness    Frequency 
 

                                       1    Very               911 

                                       2    Pretty            1656 

                                       3    Not                388 
 

PROC GENMOD is modeling the probabilities of levels of Happiness having LOWER Ordered Values in 

the response profile table. 

 

                        Analysis Of Maximum Likelihood Parameter Estimates 
 

                                   Standard    Likelihood Ratio 95%          Wald 

   Parameter     DF    Estimate       Error      Confidence Limits     Chi-Square    Pr > ChiSq 
 

   Intercept1     1     -2.0461      0.1122     -2.2672     -1.8275        332.80        <.0001 

   Intercept2     1      0.7613      0.1057      0.5546      0.9692         51.83        <.0001 

   Income         1      0.6311      0.0524      0.5287      0.7341        145.18        <.0001 

 

3a) Treating income as quantitative with scores (1=below average, 2=average, 3=above average), the estimated 
coefficient equals 0.631. It is important to note the way SAS orders the ordinal levels of happiness in the response profile. 
By specifying the descending option, we requested the ordering that ranges from very happy to not happy. (By default, by 
the way we named the categories for happiness, the ordinal response would have been ordered from not happy to very 
happy.)  
The estimated cumulative odds of happiness below any level are multiplied by exp(0.631)=1.88 for every unit increase in 
the family income. Since happiness is ordered from very happy to not happy, the probability of happiness below any level 
increases with increasing family income. That is, responses are more likely to fall at the low end (happy end) of the scale 
for increasing income. 
 

3b)  
proc genmod data=happy descending; 

class Income; 

model Happiness = Income / dist=multinomial link=clogit lrci type3; 

freq count; 

run; 
 

                                         Response Profile 
 

                                 Ordered                     Total 

                                   Value    Happiness    Frequency 
 

                                       1    Very               911 

                                       2    Pretty            1656 

                                       3    Not                388 
 

PROC GENMOD is modeling the probabilities of levels of Happiness having LOWER Ordered Values in 

the response profile table. 

 

                        Analysis Of Maximum Likelihood Parameter Estimates 
 

                                      Standard    Likelihood Ratio 95%          Wald 

 Parameter          DF    Estimate       Error      Confidence Limits     Chi-Square    Pr > ChiSq 
 

 Intercept1          1     -0.2521      0.0790     -0.4072     -0.0972         10.17        0.0014 

 Intercept2          1      2.5643      0.0950      2.3793      2.7518        728.38        <.0001 

 Income        1     1     -1.2369      0.1055     -1.4445     -1.0307        137.37        <.0001 

 Income        2     1     -0.4501      0.0941     -0.6348     -0.2658         22.88        <.0001 

 Income        3     0      0.0000      0.0000      0.0000      0.0000           .           . 
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For families with below average income (Income=1), the estimated odds of being very or pretty happy (instead of not 
happy) are exp(2.5643 - 1.2369) = 3.77, while they are exp( 2.5643 – 0.4501) = 8.28 for families with average income and 
exp(2.5643) =  12.99 for families with above average income. I.e., the odds of being very or pretty happy are 
exp(1.2369)=3.44 times higher for families with above average income than those with below average income.  
 

For a comparison, the estimated odds for the model assuming a linear trend (on the logit scale) as in part a are 
exp(0.7613 + 0.6311) = 4.02 for below average income, exp(0.7613 + 2*0.6311) = 7.56 for average income and 
exp(0.7613 + 3*0.6311) = 14.22 for above average income, and the odds of being very or pretty happy are 
exp(2*0.6311)=3.53 times higher for families with above average income than those with below average income. These 
estimates are rather similar to those from the model treating income as a factor.      
 

Formally, since the model in part a is a special case of the model in part b (namely, when beta1 - 2*beta2 + beta3 = 0, 
where beta1, beta2 and beta3 are the coefficients for Income in the model in part b) we can compare the models via a 
liklihood ratio test. I we add the SAS command 
 
contrast "LR test" Income 1 -2 1 /E; 

 
to the code above, we get 
 
                                 Coefficients for Contrast LR test 
 

           Label           Row    Intercept1    Intercept2      Prm1      Prm2      Prm3 
 

           LR test           1             0             0         1        -2         1 
 

 

                                         Contrast Results 
 

                                               Chi- 

                      Contrast        DF     Square    Pr > ChiSq    Type 
 

                      LR test          1       5.34        0.0208    LR 

 
The likelihood ratio test statistic equals 5.34, yielding a P-value of 0.0208, showing that the model treating the effect of 
income as linear on the logit scale is not adequate. 
 
3c) For plotting, it is easier to use proc logistic to create a dataset with the fitted cumulative and category probabilities: 
 

proc logistic data=happy descending; 

model Happiness = Income / aggregate scale=none; 

freq count; 

output out=prediction PREDPROBS=I; *requests fitted category probabilities; 

run; 

/* setting graphing parameters */ 

goptions htext=2; 

axis1 label=("Income") order = (1 to 3 by 1) minor = none; 

axis2 label=(angle=90 "Predicted Cumulative Logit") order = (-2 to 3 by 1) minor=none; 

legend1 label=none value=('<= Very Happy' '<= Pretty Happy') 

       position=(bottom center inside) mode=share cborder=black; 

symbol interpol=join value=dot width=2; 

proc gplot data = probs; 

plot (logit1 logit2)*Income /overlay haxis=axis1 vaxis=axis2 legend=legend1; 

run; 

quit; 
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/* fitted cumulative probabilities */ 

axis3 label=(angle=90 "Predicted Cumulative Prob.") order = (0 to 1 by .2) minor=none; 

proc gplot data = probs; 

plot (CP_Very CP_Pretty)*Income /overlay haxis=axis1 vaxis=axis3 legend=legend1; 

run; 

quit; 

 
 

/* fitted category probabilities */ 

axis4 label=(angle=90 "Predicted Probability") order = (0 to 1 by .2) minor=none; 

legend2 label=none value=('Very Happy' 'Pretty Happy' 'Not Happy') 

       position=(top center inside) mode=share cborder=black; 

proc gplot data = probs; 

plot (IP_Very IP_Pretty IP_Not)*Income /overlay haxis=axis1 vaxis=axis4 legend=legend2; 

run; 

quit; 
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3d) The output of the proc logistic call above shows the score test for the proportional odds assumption: 
 

proc logistic data=happy descending; 

model Happiness = Income / aggregate scale=none; 

freq count; 

run; 
 

                                         Response Profile 
 

                                Ordered                       Total 

                                  Value     Happiness     Frequency 
 

                                      1     Very                911 

                                      2     Pretty             1656 

                                      3     Not                 388 
 

                Probabilities modeled are cumulated over the lower Ordered Values. 

 

                          Score Test for the Proportional Odds Assumption 
 

                                Chi-Square       DF     Pr > ChiSq 
 

                                    3.2595        1         0.0710 

 

                             Analysis of Maximum Likelihood Estimates 
 

                                                  Standard          Wald 

            Parameter           DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 

            Intercept Very       1     -2.0461      0.1113      337.9827        <.0001 

            Intercept Pretty     1      0.7613      0.1049       52.6391        <.0001 

            Income               1      0.6311      0.0520      147.2925        <.0001 

 

3e) Test goodness of fit for the proportional odds model when treating income as quantitative: At each of the 3 income 
levels, we have a multinomial response with 3 categories, hence, there are 3*(3-1) = 6 multinomial probabilities. The 
model specifies these in terms of 3 parameters. A goodness of fit test compares the fitted cell counts based on the model 
to the observed cell counts through a statistic such as the likelihood ratio statistic or the Pearson statistic and has df=6-3 
= 3. From the proc logistic output: 
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                          Deviance and Pearson Goodness-of-Fit Statistics 
 

                   Criterion          Value       DF     Value/DF     Pr > ChiSq 
 

                   Deviance         16.1867        3       5.3956         0.0010 

                   Pearson          15.8487        3       5.2829         0.0012 

 
3f) Fit adjacent category logit model. Here, each row shows the multinomial counts in the three categories.  
/* Fit Adjacent Category Model with proportional odds */ 

data happy1; 

input Income y1 y2 y3; 

datalines; 

3 272 294 49 

2 454 835 131 

1 185 527 208 

; 

proc nlmixed data=happy1; 

eta1 = alpha1+alpha2+2*beta*Income; 

eta2 = alpha2+beta*Income; 

p3 = 1/(1+exp(eta1)+exp(eta2)); 

p1 = exp(eta1)*p3; 

p2 = exp(eta2)*p3; 

ll = y1*log(p1) + y2*log(p2) + y3*log(p3); 

model y1 ~ general(ll); 

run; 

 
                                      The NLMIXED Procedure 
 

                                       Parameter Estimates 
 

                        Standard 

   Parameter  Estimate     Error    DF  t Value  Pr > |t|   Alpha     Lower     Upper  Gradient 
 

   alpha1      -1.6116   0.09813     3   -16.42    0.0005    0.05   -1.9239   -1.2993  1.527E-6 

   alpha2       0.5648   0.08866     3     6.37    0.0078    0.05    0.2827    0.8470  -6.99E-7 

   beta         0.5130   0.04331     3    11.84    0.0013    0.05    0.3751    0.6508  3.255E-6 

 
Note: When there is a continuous predictor or when you have subject-level data, one option is to create a multivariate 
binary response for each subject. E.g., with three response categories 
data subj; 

input subj Income y1 y2 y3; 

datalines; 

1 1 1 0 0 

2 1 0 1 0 

3 1 0 0 1 

4 3 0 1 0 

... 

; 

would indicate that the first subject is in income category 1 and made response ‘very happy’, that the second subject is in 
income category 1 and made response ‘pretty happy’, that the third subject is in income category 1 and made response 
‘not happy’ and that the fourth subject is in income category 3 and made response ‘pretty happy’. 
 
Interpretation of effect: The estimated odds of response very happy instead of pretty happy, and the estimated odds of 
response pretty happy instead of not too happy increase by a factor of exp(0.513) = 1.67 for every category increase in 
average family income. 
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One can get predicted category probabilities from the adjacent category model by including estimate statements in the 
nlmixed call: 
/* Predicted category probabilities */ 

estimate "P(Y = very happy|Income=3)" exp(alpha1+alpha2+2*beta*3)/ 

(1+exp(alpha1+alpha2+2*beta*3)+exp(alpha2+beta*3)); 

estimate "P(Y = very happy|Income=2)" exp(alpha1+alpha2+2*beta*2)/ 

(1+exp(alpha1+alpha2+2*beta*2)+exp(alpha2+beta*2)); 

estimate "P(Y = very happy|Income=1)" exp(alpha1+alpha2+2*beta)/ 

(1+exp(alpha1+alpha2+2*beta)+exp(alpha2+beta)); 
 

estimate "P(Y = pretty happy|Income=3)" exp(alpha2+beta*3)/ 

(1+exp(alpha1+alpha2+2*beta*3)+exp(alpha2+beta*3)); 

estimate "P(Y = pretty happy|Income=2)" exp(alpha2+beta*2)/ 

(1+exp(alpha1+alpha2+2*beta*2)+exp(alpha2+beta*2)); 

estimate "P(Y = pretty happy|Income=1)" exp(alpha2+beta)/ 

(1+exp(alpha1+alpha2+2*beta)+exp(alpha2+beta)); 
 

estimate "P(Y = pretty happy|Income=3)" 1/ 

(1+exp(alpha1+alpha2+2*beta*3)+exp(alpha2+beta*3)); 

estimate "P(Y = not happy|Income=2)" 1/ 

(1+exp(alpha1+alpha2+2*beta*2)+exp(alpha2+beta*2)); 

estimate "P(Y = not happy|Income=1)" 1/ 

(1+exp(alpha1+alpha2+2*beta)+exp(alpha2+beta)); 

 

                                      Additional Estimates 
 

                                          Standard 

Label                          Estimate      Error     DF   t Value   Pr > |t|    Alpha      Lower 
 

P(Y = very happy|Income=3)       0.4532    0.01559      3     29.08     <.0001     0.05     0.4036 

P(Y = very happy|Income=2)       0.3162   0.008785      3     36.00     <.0001     0.05     0.2883 

P(Y = very happy|Income=1)       0.1992    0.01052      3     18.93     0.0003     0.05     0.1657 

P(Y = pretty happy|Income=3)     0.4874    0.01218      3     40.00     <.0001     0.05     0.4486 

P(Y = pretty happy|Income=2)     0.5680   0.009284      3     61.18     <.0001     0.05     0.5385 

P(Y = pretty happy|Income=1)     0.5975   0.009713      3     61.51     <.0001     0.05     0.5666 

P(Y = pretty happy|Income=3)    0.05946   0.005523      3     10.76     0.0017     0.05    0.04188 

P(Y = not happy|Income=2)        0.1157   0.005932      3     19.51     0.0003     0.05    0.09686 

P(Y = not happy|Income=1)        0.2033    0.01069      3     19.01     0.0003     0.05     0.1693 

 

 
Exercise 4: Continuation-Ratio Model for Happiness and Family Income: 
 
SAS code (using proc nlmixed): 
/* Fit Continuation-Ratio Model with proportional odds */ 

proc nlmixed data=happy1; 

eta1 = alpha1 + beta*Income; 

eta2 = alpha2 + beta*Income; 

p1 = exp(eta1)/(1+exp(eta1)); 

p2 = exp(eta2)/((1+exp(eta1))*(1+exp(eta2))); 

p3 = 1-p1-p2; 

ll = y1*log(p1) + y2*log(p2) + y3*log(p3); 

model y1 ~ general(ll); 

/* Predicted category probabilities */ 

predict p1 out=pred1; 

run; 
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                                       The NLMIXED Procedure 
 

                                       Parameter Estimates 
 

                        Standard 

   Parameter  Estimate     Error    DF  t Value  Pr > |t|   Alpha     Lower     Upper  Gradient 
 

   alpha1      -1.9332    0.1043     3   -18.54    0.0003    0.05   -2.2651   -1.6014   -2.5E-7 

   beta         0.5766   0.04794     3    12.03    0.0012    0.05    0.4240    0.7291  0.000204 

   alpha2       0.4583   0.09708     3     4.72    0.0180    0.05    0.1493    0.7673  0.000072 

 
proc print data=pred1 label; 

label Pred = 'P(Y = very happy | Income)'; 

var Income Pred; 

run; 

 

                                                     P(Y = very 

                                                       happy | 

                                    Obs    Income      Income) 
 

                                     1        3        0.44928 

                                     2        2        0.31429 

                                     3        1        0.20478 

 

Interpretation of effect: The estimated odds of response very happy instead of pretty or not happy and the estimated 
odds of response pretty happy instead of not happy increase by a factor of exp(0.5766) = 1.78 for every category increase 
in family income. (Note that this effect is in between the effect for the cumulative logit model, exp(0.631)=1.88 and the 
effect of the adjacent category model exp(0.513) = 1.67, as these models contrast different (cumulative) probabilities. 

 
SAS code (using proc genmod): 
To use proc genmod, we have to create separate 3x2 tables: Income x (very happy vs. pretty and not happy) and Income x 
(very and pretty happy vs. not happy). This is done using a stratum, as then proc genmod uses a different intercept for 
each stratum, but a common effect parameter for income: 
/* Fit Continuation-Ratio Model with proportional odds */ 

data happy2; 

input stratum Income successes failures; 

n=successes+failures; 

datalines; 

1 3 272 343 

1 2 454 966 

1 1 185 735 

2 3 294 49 

2 2 835 131 

2 1 527 208 

; 

proc genmod data=happy2; 

class stratum; 

model successes/n = stratum Income /noint dist=binomial link=logit; 

run; 
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                                       The GENMOD Procedure 
 

                        Analysis Of Maximum Likelihood Parameter Estimates 
 

                                     Standard     Wald 95% Confidence          Wald 

 Parameter         DF    Estimate       Error           Limits           Chi-Square    Pr > ChiSq 
 

 Intercept          0      0.0000      0.0000      0.0000      0.0000           .           . 

 stratum      1     1     -1.9332      0.1043     -2.1376     -1.7289        343.71        <.0001 

 stratum      2     1      0.4583      0.0971      0.2680      0.6486         22.28        <.0001 

 Income             1      0.5766      0.0479      0.4826      0.6705        144.63        <.0001 

 
 
 

Exercise 5: Probit Model 
 

SAS code (using proc genmod): 
 
/* Fit Cumulative Probit Model */ 

proc genmod data=happy descending; 

 model Happiness = Income / dist=multinomial link=cprobit lrci type3; 

 freq count; 

run; 

 
 
                                         Response Profile 
 

                                 Ordered                     Total 

                                   Value    Happiness    Frequency 
 

                                       1    Very               911 

                                       2    Pretty            1656 

                                       3    Not                388 

 
                        Analysis Of Maximum Likelihood Parameter Estimates 
 

                                   Standard    Likelihood Ratio 95%          Wald 

   Parameter     DF    Estimate       Error      Confidence Limits     Chi-Square    Pr > ChiSq 
 

   Intercept1     1     -1.2072      0.0632     -1.3314     -1.0835        364.69        <.0001 

   Intercept2     1      0.4678      0.0607      0.3489      0.5868         59.38        <.0001 

   Income         1      0.3637      0.0299      0.3051      0.4223        148.04        <.0001 

 
5a) Interpretation of Effect: The estimate of 0.36 implies that the fitted regression model for the underlying latent 
variable on happiness (ranging from greater happiness to unhappiness) has slope -0.36: For every category increase in 
income, the mean of an underlying latent variable for happiness decreases (i.e., moves towards more happiness) by 0.36 
standard deviations (of the latent normal distribution). 
 
5b) The estimate for the cumulative logit model was equal to 0.6311 (see 3a above), hence the fitted regression model 
for the underlying (logistic) latent variable on happiness has slope -0.63: For every category increase in income, the mean 
of an underlying latent variable for happiness decreases (towards unhappiness) by 0.63 standard deviations (of the latent 

logistic distribution, which has standard deviation /sqrt(3) = 1.81). Since the standard deviation of the standard normal 
cdf is 1/1.81=0.55 times the standard deviation of the standard logistic cdf, this corresponds to a decrease of 0.63*0.55 = 
0.35 on the standard normal scale. It follows that the cumulative probit and logit models lead to very similar estimates of 
the effect of income on the latent variable. This can also be seen by comparing fitted category probabilities (see below). 
 
5c) see R code 
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Solutions to Exercises using R 
 

Exercise 1: Cumulative Logit model for mental impairment data: 
 
R code (using package “VGAM”): 

(This package uses same parameterization as SAS, i.e., linear predictor =  j + x.) 
 

> mental <- read.table("mental.dat", header=TRUE) 

> head(mental) 

  impair ses life 

1      1   1    1 

2      1   1    9 

3      1   1    4 

4      1   1    3 

5      1   0    2 

6      1   1    0 

> require(VGAM) 

> fit <- vglm(impair ~ life + ses, family=cumulative(parallel=TRUE), data=mental) 

> summary(fit) 

 

Selected Output: 

Coefficients: 

              Estimate Std. Error  z value 

(Intercept):1 -0.28176    0.62304 -0.45223 

(Intercept):2  1.21291    0.65119  1.86260 

(Intercept):3  2.20947    0.71719  3.08075 

life          -0.31888    0.11944 -2.66973 

ses            1.11112    0.61427  1.80884 

 

1b)  
> maxl=logLik(fit) 

> maxl 

[1] -49.54895 

> fit0 <- vglm(impair ~ ses, family=cumulative(parallel=TRUE), data=mental) 

> maxl0 <- logLik(fit0) 

> maxl0 

[1] -53.43718 

> LR.stat <- -2*(maxl0 - maxl) 

> LR.stat 

[1] 7.776457 

> 1 - pchisq(LR.stat,df=1) 

[1] 0.005293151 

 

Likelihood ratio statistic: 7.78; P-value for Likelihood ratio test: 0.0053 
 

1c) Cannot compute profile likelihood interval directly (package ordinal below can compute profile likelihood intervals). 
Wald interval from output above: -0.3188  +/- 1.96*0.119. 
 
1d)  
> fit1 <- vglm(impair ~ life + ses + life*ses, family=cumulative(parallel=TRUE), 

data=mental) 

> summary(fit1) 

Coefficients: 

               Estimate Std. Error  z value 

(Intercept):1  0.098131    0.81107  0.12099 

(Intercept):2  1.592521    0.83729  1.90199 

(Intercept):3  2.606616    0.90980  2.86504 

life          -0.420448    0.19034 -2.20893 

ses            0.370876    1.13027  0.32813 

life:ses       0.181294    0.23613  0.76777 
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Estimated coefficient for interaction effect: -0.1813 
 

 
1e)  
> fit1 <- vglm(impair ~ life + ses + life*ses, family=cumulative(parallel=TRUE), 

data=mental) 

> LR.stat <- -2*(maxl - logLik(fit1)) 

> LR.stat 

[1] 0.5934586 

> 1 - pchisq(LR.stat,df=1) 

[1] 0.4410848 

 

LR-stat = 0.594; P-value = 0.441 
 

1f) Plot the estimated cumulative logits, cumulative probabilities and category probabilities against the life score for each 
SES category. 
 
> ### fitted logits 

> life1 <- seq(0,9,1) 

> fit.logit.ses0 <- predict(fit,newdata=data.frame(life=life1,ses=0)) 

> fit.logit.ses1 <- predict(fit,newdata=data.frame(life=life1,ses=1)) 

> name <- colnames(fit.logit.ses1) 

> plot.data <- data.frame(life=rep(life1,3),ses=rep(c("SES = low","SES = high"),each=3*10), 

type=rep(name,each=10), logit=c(fit.logit.ses0,fit.logit.ses1)) 

> head(plot.data) 

  life       ses             type      logit 

1    0 SES = low logit(P[Y< = 1]) -0.2817575 

2    1 SES = low logit(P[Y< = 1]) -0.6006407 

3    2 SES = low logit(P[Y< = 1]) -0.9195239 

4    3 SES = low logit(P[Y< = 1]) -1.2384071 

5    4 SES = low logit(P[Y< = 1]) -1.5572904 

6    5 SES = low logit(P[Y< = 1]) -1.8761736 

> xyplot(logit~life|ses, group=type, data=plot.data, type="l", auto.key = 

list(points=FALSE, lines=TRUE, columns=3)) 

 

 

 

 
 

 

 

 

> ### fitted cumulative probabilities 

> fit.cumprob.ses0 <- predict(fit,newdata=data.frame(life=life1,ses=0), untransform=TRUE) 

> fit.cumprob.ses1 <- predict(fit,newdata=data.frame(life=life1,ses=1), untransform=TRUE) 
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> name <- colnames(fit.cumprob.ses1) 

> plot.data <- data.frame(life=rep(life1,3),ses=rep(c("SES = low","SES = high"),each=3*10), 

type=rep(name,each=10), cumProb=c(fit.cumprob.ses0,fit.cumprob.ses1)) 

> head(plot.data) 

  life       ses      type   cumProb 

1    0 SES = low P[Y< = 1] 0.4300230 

2    1 SES = low P[Y< = 1] 0.3541971 

3    2 SES = low P[Y< = 1] 0.2850549 

4    3 SES = low P[Y< = 1] 0.2247134 

5    4 SES = low P[Y< = 1] 0.1740358 

6    5 SES = low P[Y< = 1] 0.1328290 

> xyplot(cumProb~life|ses, group=type, data=plot.data, type="l", auto.key = 

list(points=FALSE, lines=TRUE, columns=3)) 

 
 

 

 
 
 

 

> fit.prob.ses0 <- predict(fit,newdata=data.frame(life=life1,ses=0), type="response") 

> fit.prob.ses1 <- predict(fit,newdata=data.frame(life=life1,ses=1), type="response") 

> name <- colnames(fit.prob.ses1) 

> plot.data <- data.frame(life=rep(life1,4),ses=rep(c("SES = low","SES = high"),each=4*10), 

type=rep(name,each=10), Prob=c(fit.prob.ses0,fit.prob.ses1)) 

> head(plot.data) 

  life       ses type      Prob 

1    0 SES = low well 0.4300230 

2    1 SES = low well 0.3541971 

3    2 SES = low well 0.2850549 

4    3 SES = low well 0.2247134 

5    4 SES = low well 0.1740358 

6    5 SES = low well 0.1328290 

> xyplot(Prob~life|ses, group=type, data=plot.data, type="l", auto.key = list(points=FALSE, 

lines=TRUE, columns=3)) 
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R code (using package “ordinal”): 
 

Attention, package “ordinal” uses the latent variable coding, i.e., linear predictor =  j  – x! 
 
1a) 
> mental <- read.table("mental.dat", header=TRUE) 

> mental$impair <- factor(mental$impair, labels=c("well","mild","moderate","impaired"), 

ordered=TRUE) 

> head(mental) 

  impair ses life 

1   well   1    1 

2   well   1    9 

3   well   1    4 

4   well   1    3 

5   well   0    2 

6   well   1    0 

> require(ordinal) 

> fit <- clm(impair ~ life + ses, data=mental) 

> summary(fit) 

 link  threshold nobs logLik AIC    niter max.grad cond.H  

 logit flexible  40   -49.55 109.10 4(0)  3.17e-08 3.6e+02 

 

Coefficients: 

     Estimate Std. Error z value Pr(>|z|)    

life   0.3189     0.1210   2.635   0.0084 ** 

ses   -1.1112     0.6109  -1.819   0.0689 .  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Threshold coefficients: 

                  Estimate Std. Error z value 

well|mild          -0.2819     0.6423  -0.439 

mild|moderate       1.2128     0.6607   1.836 

moderate|impaired   2.2094     0.7210   3.064 

 

1b)  
> fit0 <- clm(impair ~ ses, data=mental) # model without life effect 

> # or: 

> # fit0 <- update(fit, ~ -life) 

> anova(fit,fit0) 
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Likelihood ratio tests of cumulative link models: 

  

     formula:            link: threshold: 

fit0 impair ~ ses        logit flexible   

fit  impair ~ life + ses logit flexible   

 

     no.par    AIC  logLik LR.stat df Pr(>Chisq)    

fit0      4 114.87 -53.437                          

fit       5 109.10 -49.549  7.7765  1   0.005293 ** 

--- 

 

Likelihood ratio statistic: 7.77; P-value for Likelihood ratio test: 0.0053. 
 

1c)  
> confint(fit) 

           2.5 %     97.5 % 

life  0.09203351 0.57184548 

ses  -2.34711898 0.06410755 

 

95% Profile Likelihood Confidence for1:  [0.092;0.572]  (Remember, 1 here is –1 from SAS output) 
 

1d)  
> fit1 <- clm(impair ~ life + ses + ses*life, data=mental) 

> summary(fit1) 

 link  threshold nobs logLik AIC    niter max.grad cond.H  

 logit flexible  40   -49.25 110.50 4(0)  2.30e-08 1.2e+03 

 

Coefficients: 

         Estimate Std. Error z value Pr(>|z|)   

ses       -0.3709     1.1361  -0.326   0.7441   

life       0.4204     0.1864   2.255   0.0241 * 

ses:life  -0.1813     0.2383  -0.761   0.4468   

 

Estimated coefficient for interaction effect: -0.1813 
 

1e)  
> anova(fit1,fit) 

     no.par   AIC  logLik LR.stat df Pr(>Chisq) 

fit       5 109.1 -49.549                       

fit1      6 110.5 -49.252  0.5935  1     0.4411 

 

LR-stat = 0.594; P-value = 0.441 
 

 
 
Exercise 2: Auto Accidents Injuries: 
 

R code (using package “VGAM”): 
 

> accident <- read.table("accident.dat", header=TRUE) 

> accident 

  gender location seatbelt    y1  y2  y3  y4 y5 

1 female    urban       no  7287 175 720  91 10 

2 female    urban      yes 11587 126 577  48  8 

3 female    rural       no  3246  73 710 159 31 

4 female    rural      yes  6134  94 564  82 17 

5   male    urban       no 10381 136 566  96 14 

6   male    urban      yes 10969  83 259  37  1 

7   male    rural       no  6123 141 710 188 45 

8   male    rural      yes  6693  74 353  74 12 

> require(VGAM) 
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> fit <- vglm(cbind(y1,y2,y3,y4,y5) ~ gender + location + seatbelt + location*seatbelt, 

data=accident, family=cumulative(parallel=TRUE)) 

> summary(fit) 

Coefficients: 

                          Estimate Std. Error z value 

(Intercept):1              1.17775   0.028486 41.3442 

(Intercept):2              1.35217   0.028837 46.8895 

(Intercept):3              3.21971   0.041260 78.0344 

(Intercept):4              5.12666   0.088571 57.8820 

gendermale                 0.54625   0.027211 20.0748 

locationurban              0.82326   0.034756 23.6871 

seatbeltyes                0.88457   0.038363 23.0577 

locationurban:seatbeltyes -0.12442   0.054765 -2.2718 

 

2a) R uses a different coding for the dummy variables than SAS. (By default, SAS treats the last category as the reference 
category, while R uses the first.) For males in urban areas wearing seat belts, the estimated cumulative logits and 
probabilities are: 
 
logit[ P(resp = not injured) ] = 1.1777 + 0.5462  + 0.8233 + 0.8846 - 0.1244 = 3.3074  
P(resp = not injured) = exp(3.3074)/[1+exp(3.3074)] = 0.965 
 
logit[ P(resp ≤ not transported) ] = 1.3522 + 0.5462 + 0.8233 + 0.8846 - 0.1244 = 3.4818  
P(resp ≤ not transported) = exp(3.4818)/[1+exp(3.4818)] = 0.970 
... 
 

2b) With the parameterization in R: Cumulative log-odds for female drivers  Cumulative log-odds for male drivers  = -1 
(for any location and seatbelt use), estimated as –0.546. Hence, the estimated cumulative log-odds ratio is equal to exp(-
0.546) = 0.58. Cannot compute profile likelihood interval directly (package ordinal below can compute profile likelihood 

intervals). Wald interval for 1 from output above: 0.5462 +/- 1.96* 0.0272 = [0.49;0.60]. Wald interval for exp(-1 ) : exp{ 
-[0.49;0.60] } = [0.55;0.61].  
 

2c) For any gender and rural location: Cumulative log odds for those using seat belt  Cumulative log-odds for those not 

using seat belt = 3, estimated as 0.8846. Estimated cumulative odds ratio = exp(0.8846) = 2.42. 
 

For any gender and urban location: Cumulative log odds for those using seat belt  Cumulative log-odds for those not 

using seat belt = 3 4 ,estimated as 0.8846 + (0.1244) 0.7602. Estimated cumulative odds ratio = exp(0.7602) = 2.14. 
 
 
 
 

R code (using package “ordinal”): 

(Package “ordinal” uses the latent variable coding, i.e, linear predictor =  j  – x!) 
 

> require("reshape2") 

> accident.long <- melt(accident,1:3) 

> colnames(accident.long)[4:5] <- c("resp","count") 

> accident.long$resp = factor(accident.long$resp, labels=c("not injured","not 

 transported","not hospitalized","hospitalized", "died"), ordered=TRUE) 

> head(accident.long)  gender location seatbelt             resp count 

1 female    urban       no      not injured  7287 

2 female    urban       no  not transported   175 

3 female    urban       no not hospitalized   720 

4 female    urban       no     hospitalized    91 

5 female    urban       no             died    10 

6 female    urban      yes      not injured 11587 

> require(ordinal) 

> fit <- clm(resp ~ gender + location + seatbelt + location*seatbelt, weights= count, 

data=accident.long) 
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> summary(fit) 

Coefficients: 

                          Estimate Std. Error z value Pr(>|z|)     

gendermale                -0.54625    0.02725 -20.048   <2e-16 *** 

locationurban             -0.82326    0.03483 -23.637   <2e-16 *** 

seatbeltyes               -0.88457    0.03848 -22.985   <2e-16 *** 

locationurban:seatbeltyes  0.12442    0.05479   2.271   0.0232 *   

--- 

Threshold coefficients: 

                                 Estimate Std. Error z value 

not injured|not transported       1.17775    0.02865   41.10 

not transported|not hospitalized  1.35217    0.02901   46.61 

not hospitalized|hospitalized     3.21971    0.04137   77.82 

hospitalized|died                 5.12666    0.08862   57.85 

 

2a) R uses a different coding for the dummy variables than SAS: For males in urban areas wearing seat belts, the 
estimated cumulative logits and probabilities are: 
 
logit[ P(resp = not injured) ] = 1.1777 – (-0.5462) – (-0.8233) – (-0.8846) – 0.1244 = 3.3074  
P(resp = not injured) = exp(3.3074)/[1+exp(3.3074)] = 0.965 
 
logit[ P(resp ≤ not transported) ] = 1.3522 – (-0.5462) – (-0.8233) – (-0.8846) – 0.1244 = 3.4818  
P(resp ≤ not transported) = exp(3.4818)/[1+exp(3.4818)] = 0.970 
... 
 
The corresponding response probabilities are: 
> cbind(accident1,fitted(fit)) 

   gender location seatbelt             resp count  fitted(fit) 

1  female    urban       no      not injured  7287 0.8809034672 

2  female    urban       no  not transported   175 0.0171185026 

... 

26   male    urban      yes      not injured 10969 0.9646825779 

27   male    urban      yes  not transported    83 0.0054842229 

28   male    urban      yes not hospitalized   259 0.0251045854 

29   male    urban      yes     hospitalized    37 0.0040234217 

30   male    urban      yes             died     1 0.0007051921 

... 

40   male    rural      yes             died    12 0.0014174344 

 

2b) With the parameterization in R and the ordinal package: Cumulative log-odds for female drivers  Cumulative log-

odds for male drivers  = 1 (for any location and seatbelt use), estimated as -0.546. Hence, the estimated cumulative log-
odds ratio is equal to exp(-0.546) = 0.58. 
  

2c) For any gender and rural location: Cumulative log odds for those using seat belt  Cumulative log-odds for those not 

using seat belt = 3 (remember, package “ordinal” uses j  – x), estimated as 0.8846). Estimated cumulative odds 
ratio = exp(0.8846) = 2.42. 
 

For any gender and urban location: Cumulative log odds for those using seat belt  Cumulative log-odds for those not 

using seat belt = 3 4 ,estimated as 0.8846) 0.1244 0.7602. Estimated cumulative odds ratio = exp(0.7602) = 
2.14. 
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Exercise 3: Happiness and Family Income: 
 
R code (using package “VGAM”): 
> happy <- read.table("happiness.dat", header=TRUE) 

> happy 

  income very pretty not 

1      3  272    294  49 

2      2  454    835 131 

3      1  185    527 208 

> ## VGAM Package 

> require(VGAM) 

> fit <- vglm(cbind(very,pretty,not) ~ income, data=happy, family = 

cumulative(parallel=TRUE)) 

> summary(fit) 

Coefficients: 

              Estimate Std. Error z value 

(Intercept):1 -2.04610   0.111294 -18.385 

(Intercept):2  0.76130   0.104935   7.255 

income         0.63107   0.051997  12.137 

 

Residual deviance: 16.18668 on 3 degrees of freedom 

 

Log-likelihood: -28.22221 on 3 degrees of freedom 

 

3a) Treating income as quantitative with scores (1=below average, 2=average, 3=above average), the estimated 
coefficient for income equals 0.631. 
 

3b) 
> fit1 <- vglm(cbind(very,pretty,not) ~ factor(income), data=happy, family = 

cumulative(parallel=TRUE)) 

> summary(fit1) 

 

Coefficients: 

                Estimate Std. Error  z value 

(Intercept):1   -1.48905   0.073324 -20.3077 

(Intercept):2    1.32736   0.071596  18.5396 

factor(income)2  0.78681   0.085370   9.2164 

factor(income)3  1.23694   0.104841  11.7982 

 

Residual deviance: 10.84597 on 2 degrees of freedom 

 

Log-likelihood: -25.55186 on 2 degrees of freedom 

 

For families with below average income (income=1), the estimated odds of being very or pretty happy (instead of not 
happy) are exp(1.32736) = 3.77, while they are exp(1.32736 + 0.78681) = 8.28 for families with average income and 
exp(1.32736+1.23694) =  12.99 for families with above average income. I.e., the odds of being very or pretty happy are 
exp(1.23694)=3.44 times higher for families with above average income than those with below average income.  
 
One can compare the two models (model in 3b is special case of model in 3a with beta1 - 2*beta2 + beta3 = 0) through a 
likelihood ratio test (= difference in the deviance):  
> LR <- -2*(logLik(fit)-logLik(fit1)) 

> LR 

[1] 5.34071 

> 1-pchisq(LR,df=1) 

[1] 0.02083299 

> deviance(fit1) - deviance(fit) 

[1] -5.34071 
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3c) Plot the models in 3a and 3b on the logit scale. If possible, include the sample cumulative logits in your plot to check 
the fit of the model. Also plot the fitted cumulative and category probabilities for the model in part a. 
> ### fitted logits 

> fit.logit <- predict(fit) 

> name <- colnames(fit.logit) 

> attach(happy) 

> plot(fit.logit[,1]~income, type="b", col="red", ylim=c(-2,4.5), ylab="Fitted Cumulative 

Logit", xlab="Family Income", main="Proportional odds model \n with income as 

quantitative") 

> lines(fit.logit[,2]~income, type="b", col="blue") 

> ## add sample logits: 

> n <- rowSums(happy[,2:4]) #total sample size 

> sample.cumprob1 <- happy[,2]/n 

> sample.cumprob2 <- rowSums(happy[,2:3])/n 

> sample.logit1 <- logit(sample.cumprob1) 

> sample.logit2 <- logit(sample.cumprob2) 

> points(sample.logit1~income, pch="+", col="red") 

> points(sample.logit2~income, pch="+", col="blue") 

> legend("top", legend=name, lty=c(1,1), col=c("red","blue"), ncol=2, bty=n) 

 

 

 

 
 

 

 

> fit1.logit <- predict(fit1) 

> plot(fit1.logit[,1]~income, type="b", col="red", ylim=c(-2,4.5), ylab="Fitted Cumulative 

Logit", xlab="Family Income", main="Proportional odds model \n with income as qualitative") 

> lines(fit1.logit[,2]~income, type="b", col="blue") 

> points(sample.logit1~income, pch="+", col="red") 

> points(sample.logit2~income, pch="+", col="blue") 

> legend("top", legend=name, lty=c(1,1), col=c("red","blue"), ncol=2, bty=n) 
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> ### fitted cumulative Probs 

> fit.cumProb <- predict(fit, untransform=TRUE) 

> name <- colnames(fit.cumProb) 

> plot(fit.cumProb[,1]~income, type="b", col="red", ylim=c(0,1), ylab="Fitted Cumulative 

Probability", xlab="Family Income", main="Proportional odds model \n with income as 

quantitative") 

> lines(fit.cumProb[,2]~income, type="b", col="blue") 

> legend("bottomright", legend=name,lty=c(1,1),col=c("red","blue"), ncol=1, bty=n) 

 

 
 

> ### fitted category Probs 

> fit.prob <- predict(fit, type="response") 

> name <- colnames(fit.prob) 

> plot(fit.prob[,1]~income, type="b", col="red", ylim=c(0,1), ylab="Fitted Probability", 

xlab="Family Income", main="Proportional odds model \n with income as quantitative") 

> lines(fit.prob[,2]~income, type="b", col="blue") 
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> lines(fit.prob[,3]~income, type="b", col="green") 

> legend("topright", legend=name,lty=c(1,1,1),col=c("red","blue","green"), ncol=1) 

 
 

 

 

 

 

3d) Fit a model that allows non-proportional odds (treating income as quantitative) and plot it. Check if the proportional 
odds assumption is reasonable. 

 

> fit2 <- vglm(cbind(very,pretty,not) ~ income, data=happy, family = 

cumulative(parallel=FALSE)) 

> summary(fit2) 

 

Coefficients: 

              Estimate Std. Error  z value 

(Intercept):1 -1.94760   0.122263 -15.9295 

(Intercept):2  0.57208   0.147450   3.8798 

income:1       0.58405   0.057518  10.1543 

income:2       0.74798   0.083775   8.9285 

 

> ### fitted logits 

> fit2.logit <- predict(fit2) 

> name <- colnames(fit2.logit) 

> plot(fit2.logit[,1]~income, type="b", col="red", ylim=c(-2,4.5), ylab="Fitted Cumulative 

Logit", xlab="Family Income", main="Model without proportional odds \n with income as 

quantitative") 

> lines(fit2.logit[,2]~income, type="b", col="blue") 

> ## add sample logits: 

> points(sample.logit1~income, pch="+", col="red") 

> points(sample.logit2~income, pch="+", col="blue") 

> legend("top", legend=name,lty=c(1,1),col=c("red","blue"), ncol=2, bty=n) 
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The lines appear are almost parallel, so the proportional odds assumption seems to be justified. To test the proportional 
odds assumption via a liklihood ratio test: 
> LR <- -2*(logLik(fit) - logLik(fit2)) 

> LR 

[1] 3.302767 

> 1 - pchisq(LR,df=1) 

[1] 0.0691633 

 

3e) Test goodness of fit for the proportional odds model when treating income as quantitative:  
> #Goodness of Fit 

> obs <- happy[2:4] 

> n <- rowSums(obs) 

> exp <- apply(fitted(fit),2,function(col) col*n) 

> X2 <- sum((obs-exp)^2/exp) 

> G2 <- 2*sum(obs*log(obs/exp)) 

> X2 

[1] 15.84874 

> 1-pchisq(X2,df=6-3) 

[1] 0.001217895 

> G2 

[1] 16.18668 

> 1-pchisq(G2,df=6-3) 

[1] 0.001038301 

 
Note: The G2 statistic is the deviance and included in the output from summary(fit), see above. 
  
3f) Adjacent Category Logit Model 
> # by default, VGLM fits log(P[Y=j+1]/P[Y=j]) 

> # reverse=TRUE reverses this to log(P[Y=j]/P[Y=j+1]) 

> fit3 <- vglm(cbind(very,pretty,not) ~ income, data=happy, family = acat(reverse=TRUE, 

parallel=TRUE)) 

> summary(fit3) 

Coefficients: 

              Estimate Std. Error  z value 

(Intercept):1 -1.61160   0.098133 -16.4226 

(Intercept):2  0.56484   0.088657   6.3711 

income         0.51297   0.043311  11.8440 

 

Names of linear predictors: log(P[Y = 1]/P[Y = 2]), log(P[Y = 2]/P[Y = 3]) 
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Fitted category probabilities for cumulative logit model with proportional odds and adjacent category model are similar: 
> cbind(income,fitted(fit)) 

  income      very    pretty        not 

1      3 0.4618501 0.4724380 0.06571191 

2      2 0.3134663 0.5697697 0.11676397 

3      1 0.1954419 0.6055286 0.19902947 

 

> cbind(income,fitted(fit3)) 

  income      very    pretty        not 

1      3 0.4531901 0.4873543 0.05945556 

2      2 0.3162396 0.5680182 0.11574214 

3      1 0.1991606 0.5974905 0.20334891 

 

 

Exercise 4: Continuation-Ratio Model for Happiness and Family Income: 
 
R code (using package “VGAM”): 
The continuation-ratio model is available via the family function ‘family=sratio’ in VGAM (‘family=cratio’ is also an 
option). For interpretation of effect see the SAS solutions. 
 
> fit5 <- vglm(cbind(very,pretty,not) ~ income, data=happy, family=sratio(parallel=TRUE)) 

> summary(fit5) 

Coefficients: 

              Estimate Std. Error z value 

(Intercept):1 -1.93324   0.104364 -18.524 

(Intercept):2  0.45830   0.097179   4.716 

income         0.57655   0.047988  12.015 

 

Names of linear predictors: logit(P[Y = 1|Y> = 1]), logit(P[Y = 2|Y> = 2]) 

 

Residual deviance: 14.97402 on 3 degrees of freedom 

 

Compare fitted category probabilities for continuation-ratio model and cumulative logit model: 
> cbind(income,fitted(fit5)) 

  income      very    pretty        not 

1      3 0.4492813 0.4951859 0.05553285 

2      2 0.3142920 0.5716105 0.11409753 

3      1 0.2047798 0.5867573 0.20846296 

> cbind(income,fitted(fit)) 

  income      very    pretty        not 

1      3 0.4618501 0.4724380 0.06571191 

2      2 0.3134663 0.5697697 0.11676397 

3      1 0.1954419 0.6055286 0.19902947 

 
 

Exercise 5: Probit Model 
 

R code (using package VGAM): 
> fit.probit <- vglm(cbind(very,pretty,not) ~ income, data=happy, 

 family=cumulative(link=probit, parallel=TRUE)) 

> summary(fit.probit) 

Coefficients: 

              Estimate Std. Error  z value 

(Intercept):1 -1.20722   0.063263 -19.0826 

(Intercept):2  0.46775   0.060703   7.7056 

income         0.36365   0.029918  12.1552 

 

Names of linear predictors: probit(P[Y< = 1]), probit(P[Y< = 2]) 

 

Residual deviance: 15.87322 on 3 degrees of freedom 
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5a) Estimated effect = 0.3636 
 

5c) Plot the fitted cumulative probabilities for in terms of income for the logit and probit model. 
 

> fit.cumProb.clogit <- predict(fit, untransform=TRUE) 

> fit.cumProb.cprobit <- predict(fit.probit, untransform=TRUE) 

> plot(fit.cumProb.clogit[,1]~income, type="b", lwd=2, col="blue", ylim=c(0,1),    

 ylab="Fitted Cumulative Probability", xlab="Family Income", main="Comparison of 

 cumulative \n logit and probit model") 

> lines(fit.cumProb.clogit[,2]~income, type="b", lwd=2, col="red") 

> lines(fit.cumProb.cprobit[,1]~income, type="b", lwd=2, col="blue") 

> lines(fit.cumProb.cprobit[,2]~income, type="b", lwd=2, col="blue") 

> legend("bottomright", legend=c("cum. logit","cum. probit"),lty=c(1,1),lwd=c(2,2), 

 col=c("red","blue"), ncol=1, bty=n) 

> ## add sample logits: 

> n <- rowSums(happy[,2:4]) #total sample size 

> sample.cumprob1 <- happy[,2]/n 

> sample.cumprob2 <- rowSums(happy[,2:3])/n 

> sample.logit1 <- logit(sample.cumprob1) 

> sample.logit2 <- logit(sample.cumprob2) 

> points(sample.logit1~income, pch="+", col="red") 

> points(sample.logit2~income, pch="+", col="red") 
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