Optional Exercises with Solutions in SAS and R Short Course on Modeling Ordinal Categorical Data

Bernhard Klingenberg

1. Consider the mental impairment data analyzed in the course, which are available at http://sites.williams.edu/bklingen/ordinal.
a. Using your choice of software, fit the cumulative logit model discussed in the notes.
b. Conduct a likelihood-ratio or Wald test about the life events effect, and interpret.
c. Construct a confidence interval for a cumulative odds ratio to interpret the life events effect.
d. Now fit the more general model that allows interaction between life events and SES in their effects on mental impairment. Interpret the nature of the interaction.
e. Test whether the interaction effect is needed in the model. Interpret.
f. Plot the estimated cumulative logits, cumulative probabilities and category probabilities against the life score for each SES category.
2. Table 1 from a study of the efficacy of seat-belt use in auto accidents has the response categories (1) not injured, (2) injured but not transported by emergency medical services, (3) injured and transported by emergency medical services but not hospitalized, (4) injured and hospitalized but did not die, and (5) injured and died. Table 2 shows output for a cumulative logit model, using indicator variables for predictors, that allows the effect of seat-belt use to vary by location.
a. Why are there four intercepts? Explain how they determine the estimated response distribution for males in urban areas wearing seat belts.
b. Estimate and interpret the cumulative odds ratio that describes the effect of gender, given seat-belt use and location. (Since gender does not occur in an interaction term, it is valid to estimate this "main effect.") Construct a 95% confidence interval for the effect, and interpret.
c. Find the estimated cumulative odds ratio between the response and seat-belt use for those in rural locations and for those in urban locations, given gender. Based on this, explain how the effect of seat-belt use varies by location, and explain how to interpret the interaction estimate.
3. Analyze the family income and happiness data mentioned in the notes, treating family income as quantitative with scores $(3,2,1)$.
a. Fit a cumulative logit model and interpret the income effect estimate.
b. Now treat income as a qualitative factor instead of a quantitative predictor with scores. Interpret the effects. Analyze whether a significantly improved fit results from treating income as a qualitative factor.
c. Plot the models in 3 a and 3 b on the logit scale. If possible, include the sample cumulative logits in your plot to check the fit of the model. Also plot the fitted cumulative and category probabilities for the model in part a.
d. Fit a model that allows non-proportional odds (treating income as quantitative) and plot it. Check if the proportional odds assumption is reasonable.
e. Test goodness of fit for the proportional odds model when treating income as quantitative. (This shows some lack of fit, but note the large sample size. Note how the plots in 3c show a good fit to the sample logits.)
f. Fit an adjacent-categories logit model analog of the model in (a), and interpret the income effect estimate. Compare the fitted values to those for the cumulative logit model in (a), and note how similar they are. These two models describe similar behavior (e.g., stochastically ordered distributions, varying in location rather than dispersion) and fit well in similar situations.
4. Fit a continuation-ratio logit model to the happiness and income data on p. 11 of the notes. Interpret results. (You might note that you'll get different results if you reverse the order of response categories to which you apply the continuation-ratio logits.)
5. Fitting the cumulative probit model (using R) to the happiness and income data, using scores $(3,2,1)$ for the income levels, gives results
```
Coefficients:
            Value Std. Error t value
income 0.3634578 0.02988844 12.16048
Intercepts:
    Value Std. Error t value
1|2 -0.4681 0.0607 -7.7115
2|3 1.2067 0.0632 19.0893
Residual Deviance: 5487.385
AIC: 5493.385
```

a. See if you replicate the output and interpret the effect estimate of income (i.e., 0.363).
b. The corresponding cumulative logit model gives results

```
Coefficients:
                            Value Std. Error t value
income 0.6310666 0.0523753 12.04894
Intercepts:
    Value Std. Error t value
1|2 -0.7613 0.1057 -7.1992
2|3 2.0461 0.1122 18.2428
```

Table 1: Data for Exercise on Degree of Injury in Auto Accident

| | | | Response on Injury Outcome | | | | |
| :--- | :--- | :--- | :--- | ---: | :--- | ---: | ---: | ---: |
| Gender | Location | Seat Belt | 1 | 2 | 3 | 4 | |
| Female | Urban | No | 7,287 | 175 | 720 | 91 | 10 |
| | | Yes | 11,587 | 126 | 577 | 48 | 8 |
| | Rural | No | 3,246 | 73 | 710 | 159 | 31 |
| | | Yes | 6,134 | 94 | 564 | 82 | 17 |
| Male | Urban | No | 10,381 | 136 | 566 | 96 | 14 |
| | | Yes | 10,969 | 83 | 259 | 37 | 1 |
| | Rural | No | 6,123 | 141 | 710 | 188 | 45 |
| | | Yes | 6,693 | 74 | 353 | 74 | 12 |

Table 2: Output for Exercise on Auto Accident Injuries

Parameter			DF	Estimate	Std Error
Intercept1			1	3.3074	0.0351
Intercept2			1	3.4818	0.0355
Intercept3			1	5.3494	0.0470
Intercept4			1	7.2563	0.0914
gender	female		1	-0.5463	0.0272
gender	male		0	0.0000	0.0000
location	rural		1	-0.6988	0.0424
location	urban		0	0.0000	0.0000
seatbelt	no		1	-0.7602	0.0393
seatbelt	yes		0	0.0000	0.0000
location*seatbelt	rural	no	1	-0.1244	0.0548
location*seatbelt	rural	yes	0	0.0000	0.0000
location*seatbelt	urban	no	0	0.0000	0.0000
location*seatbelt	urban	yes	0	0.0000	0.0000

Residual Deviance: 5487.699
AIC: 5493.699
Interpret the income effect (0.631), and compare substantive results to those for the cumulative probit model.
c. Plot the fitted cumulative probabilities in terms of income for the logit and probit model.

Solutions to Exercises using SAS

Exercise 1: Cumulative Logit model for mental impairment data:

SAS code (using proc genmod):
1a)
data mental;
input impair ses life;
datalines;
111
119
114
113
102
...
408
409
;
proc genmod data=mental;
model impair = life ses / dist=multinomial link=clogit type3 aggregate;
run;

Selected Output:

| | Criteria For Assessing Goodness Of Fit | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Criterion | DF | Value | Value/DF |
| Log Likelihood | -49.5489 | | |

Analysis Of Maximum Likelihood Parameter Estimates							
Parameter	DF	Estimate	Standard Error	Likelihood Confid	tio 95\% Limits	Wald Chi-Square	Pr > ChiSq
Intercept1	1	-0.2819	0.6423	-1.5615	0.9839	0.19	0.6607
Intercept2	1	1.2128	0.6607	-0.0507	2.5656	3.37	0.0664
Intercept3	1	2.2094	0.7210	0.8590	3.7123	9.39	0.0022
life	1	-0.3189	0.1210	-0.5718	-0.0920	6.95	0.0084
ses	1	1.1112	0.6109	-0.0641	2.3471	3.31	0.0689

1b) Likelihood Ratio (LR) test for $\mathrm{HO}: \beta_{1}=0$ vs $\mathrm{H} 1: \beta_{1} \neq 0$ (coefficient for life): LR statistic $=7.78$ on $\mathrm{df}=1$: P -value $=0.0053$. The data provide evidence (P -value $=0.0053$) of a significant effect of the number of life events on the cumulative logodds of mental impairment. (Wald Statistic in Chi-square form: $(-0.3189 / 0.1210)^{\wedge} 2=6.95, \mathrm{df}=1$: P -value $=0.0084$.)

Interpretation of effect: For both low and high SES adults, the odds of a mental impairment score less than or equal to j (instead of greater than j) decrease by a factor of $\exp (-0.3189)=0.73$ for every unit increase in the life event score. This is true for all j (proportional odds assumption). For instance, when $j=1=$ "well", the estimated odds of feeling well
decrease by a factor of 0.73 for every unit increase in life events. When $j=2$, the odds of feeling well or showing mild symptoms of mental impairment (versus moderate symptoms or mental impairment) decrease by a factor of 0.73 for every unit increase in the life event score.

1c) 95% Likelihood Ratio confidence interval for β_{1} : [-0.572;-0.092] (from lrci option). $\exp ([-0.572 ;-0.092])=$ [0.564;0.912].
We are 95% confident that the odds of mental impairment below any level j decrease by a factor of at least 0.91 and at most 0.56 for every unit increase in the life event score. (For Wald interval, leave out option lrci.)

1d)
proc genmod data=mental;
model impair = life ses life*ses / dist=multinomial link=clogit lrci type3; run;

LR Statistics For Type 3 Analysis			
Source	DF	Chi- Square	Pr > ChiSq
life*ses	1	0.59	0.4411

Interpretation: The decrease in the estimated cumulative odds of mental impairment below any level is stronger for those adults with low socioeconomic status (ses=0) than for those with high socioeconomic status (ses=1). In particular, for adults with low SES, the estimated cumulative odds decrease by a factor of $\exp (-0.4202)=0.66$ for every unit increase in the life events score, compared to a decrease of $\exp (-0.4204+0.1813)=0.79$ for those of high SES.

1e) However, the coefficient for the interaction term (estimate $=0.1813, \mathrm{SE}=0.238$) is not significant. Likelihood ratio test statistic $=0.59, \mathrm{df}=1$: P -value $=0.441$. The decrease in the estimated odds can be considered the same for both high and low SES.

Exercise 2: Auto Accidents Injuries:

```
SAS code (using proc genmod):
data accidents;
input gender$ location$ seatbelt$ y1-y5;
resp=1; count=y1; output;
resp=2; count=y2; output;
resp=3; count=y3; output;
resp=4; count=y4; output;
resp=5; count=y5; output;
drop y1-y5;
datalines;
```

```
female urban no 7287 175 720 91 10
female urban yes 11587 126 577 48 8
female rural no 3246 73 710 159 31
female rural yes 6134 94 564 82 17
male urban no 10381 136 566 96 14
male urban yes 10969 83 259 37 1
male rural no 6123 141 710 188 45
male rural yes 6693 74 353 74 12
;
proc genmod data=accidents;
class gender location seatbelt;
model resp = gender location seatbelt location*seatbelt/ dist=multinomial link=clogit lrci
type3;
freq count;
run;
```

Selected Output:

Parameter	Analysis Of			Maximum L	Likelihood Parameter Estimates			Wald Chi-Square	Pr > ChiSq
			DF	Estimate	Standard Error	$\begin{aligned} & \text { Likelind } \\ & \text { 95\% Cor } \\ & \text { Lim } \end{aligned}$	Ratio idence s		
Intercept1			1	3.3074	0.0351	3.2392	3.3767	8894.46	<. 0001
Intercept2			1	3.4818	0.0355	3.4127	3.5520	9603.94	<. 0001
Intercept3			1	5.3494	0.0470	5.2580	5.4420	12978.6	<. 0001
Intercept4			1	7.2563	0.0914	7.0811	7.4398	6296.51	<. 0001
gender	female		1	-0.5463	0.0272	-0.5997	-0.4929	401.92	<. 0001
gender	male		0	0.0000	0.0000	0.0000	0.0000	.	.
location	rural		1	-0.6988	0.0424	-0.7819	-0.6159	272.15	<. 0001
location	urban		0	0.0000	0.0000	0.0000	0.0000		
seatbelt	no		1	-0.7602	0.0393	-0.8374	-0.6833	374.14	$<.0001$
seatbelt	yes		0	0.0000	0.0000	0.0000	0.0000	.	.
location*seatbelt	rural	no	1	-0.1244	0.0548	-0.2318	-0.0170	5.16	0.0232
location*seatbelt	rural	yes	0	0.0000	0.0000	0.0000	0.0000	.	.
location*seatbelt	urban	no	0	0.0000	0.0000	0.0000	0.0000	.	.
location*seatbelt	urban	yes	0	0.0000	0.0000	0.0000	0.0000	.	.

LR Statistics For Type 3 Analysis

	Chi-		
Source	DF	Square	Pr $>$ ChiSq
gender	1	406.33	$<.0001$
location	1	763.96	$<.0001$
seatbelt	1	917.46	$<.0001$
location*seatbelt	1	5.15	0.0232

2a) The response variable is ordinal with 5 categories. Therefore, we model the odds of 4 cumulative probabilities, where each model has its own intercept parameter ($\alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha_{4}$).
For males in urban areas wearing seat belts, all dummy variables equal 0 and the estimated cumulative probabilities are $\exp (3.3074) /[1+\exp (3.3074)]=0.965, \exp (3.4818) /[1+\exp (3.4818)]=0.970, \exp (5.3494) /[1+\exp (5.3494)]=0.995$, $\exp (7.2563) /[1+\exp (7.2563)]=0.9993$, and 1.0. The corresponding response probabilities are $0.965,0.005,0.025,0.004$, and 0.0007 .

2b) Cumulative log-odds for female drivers - Cumulative log-odds for male drivers $=\beta_{1}$ (for any location and seatbelt use).
For given location and seatbelt use, the estimated cumulative odds of the extent of injury being less than or equal to j for females are $\exp (-0.5463)=0.58$ times the ones for males. I.e., for given location and seatbelt use, the estimated cumulative odds of the extent of injury below any level are 0.58 times smaller for males than for females. For instance, if j $=2$, the estimated cumulative odds of not being injured or being injured but not transported by emergency medical services are 0.58 times smaller for males than for females. Females, more so than males, tend to fall on the lower end of the response scale. The P-value for a likelihood ratio test for this parameter is less than 0.0001 .
A 95% profile likelihood confidence interval for the difference in the estimated cumulative log-odds for females versus males is given by $[-0.5997 ;-0.4929]$. exp $([-0.5997 ;-0.4929])=[0.549 ; 0.611]$. Hence, the estimated cumulative odds for females are at most 0.549 and at least 0.611 times smaller for females compared to males.

2c) For any gender and rural location: Cumulative log odds for those using seat belt - Cumulative log-odds for those not using seat belt $=-\left(\beta_{3}+\beta_{4}\right)$. For those in rural locations, the estimated cumulative odds of the extent of the injury being less than or equal to j are $\exp \{-(-0.76022-0.1244)\}=2.42$ times larger for those using seatbelts than those not using a seat belt. Hence, the probability of an extent of injury less than or equal to j are larger for those using seat belts, i.e., they are more likely to fall on the low end of the response scale, where the severity of the injury is not so dramatic.
For any gender and urban location: estimated cumulative log odds for those using seat belt - estimated cumulative logodds for those not using seat belt $=-\beta_{3}$. For those in urban locations, the estimated cumulative odds of the extent of the injury being less than or equal to j are $\exp \{-(-0.76022)\}=2.14$ times larger for those using a seatbelt than those not using a seat belt. Hence, the probability of an extent of injury less than or equal to j are larger for those using seat belts, i.e., they are more likely to fall on the low end of the response scale, where the severity of the injury is not so dramatic.

Note that the estimated cumulative odds ratio in urban locations is smaller by a factor of exp $(-0.1244)=0.88$ compared to rural locations. I.e., the effect of seat belt use on the odds of the extent of the injury is more pronounced in rural compared to urban locations. This effect is statistically significant (likelihood ratio P-value $=0.0232$) but in practice the two estimates of 2.42 for rural and 2.14 for urban locations are very similar.

Exercise 3: Happiness and Family Income:

SAS code (using proc genmod):

```
data happy;
input Income Happiness$ count;
datalines;
3 Very 272
3 Pretty 294
3 Not 49
2 Very 454
2 Pretty 835
2 Not 131
1 \text { Very } 1 8 5
1 \text { Pretty 527}
1 Not 208
;
proc genmod data=happy descending;
model Happiness = Income / dist=multinomial link=clogit lrci type3;
freq count;
run;
```

Response Profile		
Ordered Value	Happiness	Total Frequency
1	Very	911
2	Pretty	1656
3	Not	388

Parameter	DF	Analysis Of Maximum Likelihood Parameter Estimates					
		Estimate	Standard Error	Likelihoo Confid	Ratio 95\% Limits	Wald Chi-Square	Pr > ChiSq
Intercept1	1	-2.0461	0.1122	-2.2672	-1.8275	332.80	<. 0001
Intercept2	1	0.7613	0.1057	0.5546	0.9692	51.83	<. 0001
Income	1	0.6311	0.0524	0.5287	0.7341	145.18	<. 0001

3a) Treating income as quantitative with scores (1=below average, 2=average, 3=above average), the estimated coefficient equals 0.631 . It is important to note the way SAS orders the ordinal levels of happiness in the response profile. By specifying the descending option, we requested the ordering that ranges from very happy to not happy. (By default, by the way we named the categories for happiness, the ordinal response would have been ordered from not happy to very happy.)
The estimated cumulative odds of happiness below any level are multiplied by $\exp (0.631)=1.88$ for every unit increase in the family income. Since happiness is ordered from very happy to not happy, the probability of happiness below any level increases with increasing family income. That is, responses are more likely to fall at the low end (happy end) of the scale for increasing income.

```
3b)
proc genmod data=happy descending;
class Income;
model Happiness = Income / dist=multinomial link=clogit lrci type3;
freq count;
run;
```


Parameter		Analysis Of Maximum Likelihood Parameter Estimates						
		DF	Estimate	Standard Error	Likelihood Ratio 95\%		Wald Chi-Square	Pr > ChiSq
					Confide	Limits		
Intercept1		1	-0.2521	0.0790	-0.4072	-0.0972	10.17	0.0014
Intercept2		1	2.5643	0.0950	2.3793	2.7518	728.38	<. 0001
Income	1	1	-1.2369	0.1055	-1.4445	-1.0307	137.37	<. 0001
Income	2	1	-0.4501	0.0941	-0.6348	-0.2658	22.88	<. 0001
Income	3	0	0.0000	0.0000	0.0000	0.0000	-	-

For families with below average income (Income=1), the estimated odds of being very or pretty happy (instead of not happy) are $\exp (2.5643-1.2369)=3.77$, while they are $\exp (2.5643-0.4501)=8.28$ for families with average income and $\exp (2.5643)=12.99$ for families with above average income. I.e., the odds of being very or pretty happy are $\exp (1.2369)=3.44$ times higher for families with above average income than those with below average income.

For a comparison, the estimated odds for the model assuming a linear trend (on the logit scale) as in part a are $\exp (0.7613+0.6311)=4.02$ for below average income, $\exp (0.7613+2 * 0.6311)=7.56$ for average income and $\exp \left(0.7613+3^{*} 0.6311\right)=14.22$ for above average income, and the odds of being very or pretty happy are $\exp \left(2^{*} 0.6311\right)=3.53$ times higher for families with above average income than those with below average income. These estimates are rather similar to those from the model treating income as a factor.

Formally, since the model in part a is a special case of the model in part b (namely, when beta1-2*beta2 + beta $3=0$, where beta1, beta2 and beta3 are the coefficients for Income in the model in part b) we can compare the models via a liklihood ratio test. I we add the SAS command

```
contrast "LR test" Income 1 -2 1 /E;
```

to the code above, we get

The likelihood ratio test statistic equals 5.34 , yielding a P-value of 0.0208 , showing that the model treating the effect of income as linear on the logit scale is not adequate.

3c) For plotting, it is easier to use proc logistic to create a dataset with the fitted cumulative and category probabilities:

```
proc logistic data=happy descending;
model Happiness = Income / aggregate scale=none;
freq count;
output out=prediction PREDPROBS=I; *requests fitted category probabilities;
run;
/* setting graphing parameters */
goptions htext=2;
axis1 label=("Income") order = (1 to 3 by 1) minor = none;
axis2 label=(angle=90 "Predicted Cumulative Logit") order = (-2 to 3 by 1) minor=none;
legend1 label=none value=('<= Very Happy' '<= Pretty Happy')
    position=(bottom center inside) mode=share cborder=black;
symbol interpol=join value=dot width=2;
proc gplot data = probs;
plot (logit1 logit2)*Income /overlay haxis=axis1 vaxis=axis2 legend=legend1;
run;
quit;
```


/* fitted cumulative probabilities */
axis3 label=(angle=90 "Predicted Cumulative Prob.") order = (0 to 1 by .2) minor=none;
proc gplot data = probs;
plot (CP_Very CP_Pretty)*Income /overlay haxis=axis1 vaxis=axis3 legend=legend1;
run;
quit;


```
/* fitted category probabilities */
axis4 label=(angle=90 "Predicted Probability") order = (0 to 1 by .2) minor=none;
legend2 label=none value=('Very Happy' 'Pretty Happy' 'Not Happy')
    position=(top center inside) mode=share cborder=black;
proc gplot data = probs;
plot (IP_Very IP_Pretty IP_Not)*Income /overlay haxis=axis1 vaxis=axis4 legend=legend2;
run;
quit;
```


3d) The output of the proc logistic call above shows the score test for the proportional odds assumption:
proc logistic data=happy descending;
model Happiness = Income / aggregate scale=none;
freq count;
run;

Score Test for the Proportional Odds Assumption		
Chi-Square	DF	Pr > ChiSq
3.2595	1	0.0710

Analysis of Maximum Likelihood Estimates

| | | | Standard | Wald | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Parameter | DF | Estimate | Error | Chi-Square | Pr $>$ ChiSq |
| Intercept Very | 1 | -2.0461 | 0.1113 | 337.9827 | $<.0001$ |
| Intercept Pretty | 1 | 0.7613 | 0.1049 | 52.6391 | $<.0001$ |
| Income | 1 | 0.6311 | 0.0520 | 147.2925 | $<.0001$ |

3e) Test goodness of fit for the proportional odds model when treating income as quantitative: At each of the 3 income levels, we have a multinomial response with 3 categories, hence, there are $3 *(3-1)=6$ multinomial probabilities. The model specifies these in terms of 3 parameters. A goodness of fit test compares the fitted cell counts based on the model to the observed cell counts through a statistic such as the likelihood ratio statistic or the Pearson statistic and has $\mathrm{df}=6-3$ $=3$. From the proc logistic output:

Deviance and Pearson Goodness-of-Fit Statistics				
Criterion	Value	DF	Value/DF	Pr > ChiSq
Deviance	16.1867	3	5.3956	0.0010
Pearson	15.8487	3	5.2829	0.0012

3f) Fit adjacent category logit model. Here, each row shows the multinomial counts in the three categories.
/* Fit Adjacent Category Model with proportional odds */
data happy1;
input Income y1 y2 y3;
datalines;
327229449
2454835131
1185527208
;
proc nlmixed data=happy1;
eta1 = alpha1+alpha2+2*beta*Income;
eta2 = alpha2+beta*Income;
p3 $=1 /(1+\exp (e t a 1)+\exp (e t a 2))$;
p1 $=\exp (e t a 1) * p 3$;
p2 $=\exp (e t a 2) * p 3$;
$l l=y 1 * \log (p 1)+y 2 * \log (p 2)+y 3 * \log (p 3) ;$
model y1 ~ general(ll);
run;

Note: When there is a continuous predictor or when you have subject-level data, one option is to create a multivariate binary response for each subject. E.g., with three response categories
data subj;
input subj Income y1 y2 y3;
datalines;
11100
21010
$\begin{array}{lllll}3 & 1 & 0 & 0 & 1\end{array}$
43010
;
would indicate that the first subject is in income category 1 and made response 'very happy', that the second subject is in income category 1 and made response 'pretty happy', that the third subject is in income category 1 and made response 'not happy' and that the fourth subject is in income category 3 and made response 'pretty happy'.

Interpretation of effect: The estimated odds of response very happy instead of pretty happy, and the estimated odds of response pretty happy instead of not too happy increase by a factor of $\exp (0.513)=1.67$ for every category increase in average family income.

One can get predicted category probabilities from the adjacent category model by including estimate statements in the nlmixed call:

```
/* Predicted category probabilities */
estimate "P(Y = very happy|Income=3)" exp(alpha1+alpha2+2*beta*3)/
(1+exp(alpha1+alpha2+2*beta*3)+exp(alpha2+beta*3));
estimate "P(Y = very happy|Income=2)" exp(alpha1+alpha2+2*beta*2)/
(1+exp(alpha1+alpha2+2*beta*2)+exp(alpha2+beta*2));
estimate "P(Y = very happy|Income=1)" exp(alpha1+alpha2+2*beta)/
(1+exp(alpha1+alpha2+2*beta)+exp(alpha2+beta));
estimate "P(Y = pretty happy|Income=3)" exp(alpha2+beta*3)/
(1+exp(alpha1+alpha2+2*beta*3)+exp(alpha2+beta*3));
estimate "P(Y = pretty happy|Income=2)" exp(alpha2+beta*2)/
(1+exp(alpha1+alpha2+2*beta*2)+exp(alpha2+beta*2));
estimate "P(Y = pretty happy|Income=1)" exp(alpha2+beta)/
(1+exp(alpha1+alpha2+2*beta)+exp(alpha2+beta));
estimate "P(Y = pretty happy|Income=3)" 1/
(1+exp(alpha1+alpha2+2*beta*3)+exp(alpha2+beta*3));
estimate "P(Y = not happy|Income=2)" 1/
(1+exp(alpha1+alpha2+2*beta*2)+exp(alpha2+beta*2));
estimate "P(Y = not happy|Income=1)" 1/
(1+exp(alpha1+alpha2+2*beta)+exp(alpha2+beta));
```

Additional Estimates								
Label	Estimate	Standard Error		t Value	Pr > \|t		Alpha	Lower
$P(Y=$ very happy \mid Income=3)	0.4532	0.01559	3	29.08	<. 0001	0.05	0.4036	
$P(Y=$ very happy\|Income=2)	0.3162	0.008785	3	36.00	$<.0001$	0.05	0.2883	
$P(Y=$ very happy\|Income=1)	0.1992	0.01052	3	18.93	0.0003	0.05	0.1657	
$P(Y=$ pretty happy \mid Income=3)	0.4874	0.01218	3	40.00	<. 0001	0.05	0.4486	
$\mathrm{P}(\mathrm{Y}=$ pretty happy\|Income=2)	0.5680	0.009284	3	61.18	<. 0001	0.05	0.5385	
$\mathrm{P}(\mathrm{Y}=$ pretty happy\|Income=1)	0.5975	0.009713	3	61.51	<. 0001	0.05	0.5666	
$\mathrm{P}(\mathrm{Y}=$ pretty happy\|Income=3)	0.05946	0.005523	3	10.76	0.0017	0.05	0.04188	
$P(Y=$ not happy\|Income=2)	0.1157	0.005932	3	19.51	0.0003	0.05	0.09686	
$\mathrm{P}(\mathrm{Y}=$ not happy\|Income=1)	0.2033	0.01069	3	19.01	0.0003	0.05	0.1693	

Exercise 4: Continuation-Ratio Model for Happiness and Family Income:

SAS code (using proc nlmixed):

```
/* Fit Continuation-Ratio Model with proportional odds */
proc nlmixed data=happy1;
eta1 = alpha1 + beta*Income;
eta2 = alpha2 + beta*Income;
p1 = exp(eta1)/(1+exp(eta1));
p2 = exp(eta2)/((1+exp(eta1))*(1+exp(eta2)));
p3 = 1-p1-p2;
ll = y1*log(p1) + y2* log(p2) + y3* log(p3);
model y1 ~ general(ll);
/* Predicted category probabilities */
predict p1 out=pred1;
run;
```



```
proc print data=pred1 label;
label Pred = 'P(Y = very happy | Income)';
var Income Pred;
run;
```

	$\mathrm{P}(\mathrm{Y}=$ very	
happy \|		
Obs	Income	Income $)$
	1	3
2	2	0.44928
3	1	0.31429
0.20478		

Interpretation of effect: The estimated odds of response very happy instead of pretty or not happy and the estimated odds of response pretty happy instead of not happy increase by a factor of $\exp (0.5766)=1.78$ for every category increase in family income. (Note that this effect is in between the effect for the cumulative logit model, $\exp (0.631)=1.88$ and the effect of the adjacent category model $\exp (0.513)=1.67$, as these models contrast different (cumulative) probabilities.

SAS code (using proc genmod):

To use proc genmod, we have to create separate $3 x 2$ tables: Income x (very happy vs. pretty and not happy) and Income x (very and pretty happy vs. not happy). This is done using a stratum, as then proc genmod uses a different intercept for each stratum, but a common effect parameter for income:

```
/* Fit Continuation-Ratio Model with proportional odds */
data happy2;
input stratum Income successes failures;
n=successes+failures;
datalines;
1 3 272 343
12454966
11 185735
2 3 29449
2 2 835131
2 1 527 208
;
proc genmod data=happy2;
class stratum;
model successes/n = stratum Income /noint dist=binomial link=logit;
run;
```


Exercise 5: Probit Model

SAS code (using proc genmod):

```
/* Fit Cumulative Probit Model */
proc genmod data=happy descending;
    model Happiness = Income / dist=multinomial link=cprobit lrci type3;
    freq count;
run;
```

Response Profile		
Ordered		
Value	Total	
	Happiness	Frequency
	1	Very

5a) Interpretation of Effect: The estimate of 0.36 implies that the fitted regression model for the underlying latent variable on happiness (ranging from greater happiness to unhappiness) has slope -0.36 : For every category increase in income, the mean of an underlying latent variable for happiness decreases (i.e., moves towards more happiness) by 0.36 standard deviations (of the latent normal distribution).

5b) The estimate for the cumulative logit model was equal to 0.6311 (see 3 a above), hence the fitted regression model for the underlying (logistic) latent variable on happiness has slope -0.63: For every category increase in income, the mean of an underlying latent variable for happiness decreases (towards unhappiness) by 0.63 standard deviations (of the latent logistic distribution, which has standard deviation $\pi / \mathrm{sqrt}(3)=1.81)$. Since the standard deviation of the standard normal cdf is $1 / 1.81=0.55$ times the standard deviation of the standard logistic cdf, this corresponds to a decrease of $0.63 * 0.55=$ 0.35 on the standard normal scale. It follows that the cumulative probit and logit models lead to very similar estimates of the effect of income on the latent variable. This can also be seen by comparing fitted category probabilities (see below).

5c) see R code

Solutions to Exercises using R

Exercise 1: Cumulative Logit model for mental impairment data:

R code (using package "VGAM"):
(This package uses same parameterization as SAS, i.e., linear predictor $=\alpha_{j}+\beta x$.)

```
> mental <- read.table("mental.dat", header=TRUE)
> head(mental)
    impair ses life
1 1 1 1 1 1
2 1 1 1 9
3 1
4
5
6
> require(VGAM)
> fit <- vglm(impair ~ life + ses, family=cumulative(parallel=TRUE), data=mental)
> summary(fit)
Selected Output:
Coefficients:
            Estimate Std. Error z value
(Intercept):1 -0.28176 0.62304 -0.45223
(Intercept):2 1.21291 0.65119
(Intercept):3 2.20947 0.71719 3.08075
life -0.31888 0.11944 -2.66973
ses 1.11112 0.61427 1.80884
```

1b)
> maxl=logLik(fit)
$>$ maxl
[1] -49.54895
$>$ fit0 <- vglm(impair ~ ses, family=cumulative(parallel=TRUE), data=mental)
$>$ maxl0 <- logLik(fit0)
$>\operatorname{maxl} 0$
[1] -53.43718
$>$ LR.stat <- -2* (maxl0 - maxl)
$>$ LR.stat
[1] 7.776457
> 1 - pchisq(LR.stat,df=1)
[1] 0.005293151
Likelihood ratio statistic: 7.78; P-value for Likelihood ratio test: 0.0053

1c) Cannot compute profile likelihood interval directly (package ordinal below can compute profile likelihood intervals). Wald interval from output above: -0.3188 +/-1.96*0.119.

1d)
$>$ fitl <- vglm(impair ~ life + ses + life*ses, family=cumulative(parallel=TRUE),
data=mental)
> summary(fitl)
Coefficients:

	Estimate	Std. Error	z value
(Intercept):1	0.098131	0.81107	0.12099
(Intercept):2	1.592521	0.83729	1.90199
(Intercept):3	2.606616	0.90980	2.86504
life	-0.420448	0.19034	-2.20893
ses	0.370876	1.13027	0.32813
life:ses	0.181294	0.23613	0.76777

```
1e)
> fitl <- vglm(impair ~ life + ses + life*ses, family=cumulative(parallel=TRUE),
data=mental)
> LR.stat <- -2*(maxl - logLik(fit1))
> LR.stat
[1] 0.5934586
> 1 - pchisq(LR.stat,df=1)
[1] 0.4410848
```


LR-stat $=0.594 ;$ P-value $=0.441$

1f) Plot the estimated cumulative logits, cumulative probabilities and category probabilities against the life score for each SES category.

```
> ### fitted logits
> life1 <- seq(0,9,1)
> fit.logit.ses0 <- predict(fit,newdata=data.frame(life=life1,ses=0))
> fit.logit.ses1 <- predict(fit,newdata=data.frame(life=life1,ses=1))
> name <- colnames(fit.logit.ses1)
> plot.data <- data.frame(life=rep(life1,3),ses=rep(c("SES = low","SES = high"),each=3*10),
type=rep(name,each=10), logit=c(fit.logit.ses0,fit.logit.ses1))
> head(plot.data)
    life ses type logit
1 0 SES = low logit(P[Y< = 1]) -0.2817575
2 1 SES = low logit(P[Y< = 1]) -0.6006407
3 2 SES = low logit(P[Y< = 1]) -0.9195239
4 3 SES = low logit(P[Y< = 1]) -1.2384071
5 4 SES = low logit(P[Y< = 1]) -1.5572904
6 5 SES = low logit(P[Y< = 1]) -1.8761736
> xyplot(logit~life|ses, group=type, data=plot.data, type="l", auto.key =
list(points=FALSE, lines=TRUE, columns=3))
```


$>$ fit.cumprob.ses0 <- predict(fit, newdata=data.frame(life=lifel, ses=0), untransform=TRUE)
$>$ fit.cumprob.ses1 <- predict(fit, newdata=data.frame(life=lifel,ses=1), untransform=TRUE)

```
> name <- colnames(fit.cumprob.ses1)
> plot.data <- data.frame(life=rep(life1,3),ses=rep(c("SES = low","SES = high"),each=3*10),
type=rep(name, each=10), cumProb=c(fit.cumprob.ses0,fit.cumprob.ses1))
> head(plot.data)
    life ses type cumProb
10 SES = low P[Y< = 1] 0.4300230
2 1 SES = low P [Y< = 1] 0.3541971
    2 SES = low P[Y< = 1] 0.2850549
        3 SES = low P[Y< = 1] 0.2247134
        4 SES = low P[Y< = 1] 0.1740358
        5 SES = low P[Y< = 1] 0.1328290
> xyplot(cumProb~life|ses, group=type, data=plot.data, type="l", auto.key =
list(points=FALSE, lines=TRUE, columns=3))
```


$>$ fit.prob.ses0 <- predict(fit, newdata=data.frame(life=life1,ses=0), type="response")
$>$ fit.prob.ses1 <- predict(fit, newdata=data.frame(life=life1,ses=1), type="response")
> name <- colnames(fit.prob.ses1)
$>$ plot.data <- data.frame(life=rep(lifel,4), ses=rep(c("SES = low", "SES = high"),each=4*10),
type=rep (name, each=10), $\operatorname{Prob=c(fit.prob.ses0,fit.prob.ses1))~}$
> head(plot.data)
life ses type Prob
10 SES = low well 0.4300230
21 SES = low well 0.3541971
32 SES = low well 0.2850549
43 SES = low well 0.2247134
54 SES = low well 0.1740358
$6 \quad 5$ SES = low well 0.1328290
xyplot(Prob~life|ses, group=type, data=plot.data, type="l", auto.key = list(points=FALSE,
lines=TRUE, columns=3))

R code (using package "ordinal"):

Attention, package "ordinal" uses the latent variable coding, i.e., linear predictor $=\alpha_{j}-\beta x$!

1a)

Coefficients:

Threshold coefficients:			
	Estimate	Std. Error	z value
well\|mild	-0.2819	0.6423	-0.439
mild\|moderate	1.2128	0.6607	1.836
moderatelimpaired	2.2094	0.7210	3.064

1b)
> fit0 <- clm(impair ~ ses, data=mental) \# model without life effect
$>$ \# or:
> \# fit0 <- update(fit, ~ -life)
> anova(fit,fit0)

```
Likelihood ratio tests of cumulative link models:
    formula: link: threshold:
fit0 impair ~ ses logit flexible
fit impair ~ life + ses logit flexible
    no.par AIC logLik LR.stat df Pr(>Chisq)
fit0 4 114.87 -53.437
fit 5 109.10 -49.549 7.7765 1 0.005293 **
```

Likelihood ratio statistic: 7.77; P-value for Likelihood ratio test: 0.0053.

1c)

> confint(fit)
2.5 \% 97.5 \%
life $0.09203351 \quad 0.57184548$
ses -2.347118980 .06410755

95\% Profile Likelihood Confidence for β_{1} : [0.092;0.572] (Remember, β_{1} here is $-\beta_{1}$ from SAS output)

1d)

```
> fit1 <- clm(impair ~ life + ses + ses*life, data=mental)
> summary(fit1)
    link threshold nobs logLik AIC niter max.grad cond.H
    logit flexible 40 -49.25 110.50 4(0) 2.30e-08 1.2e+03
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
\begin{tabular}{lrrrr} 
ses & -0.3709 & 1.1361 & -0.326 & 0.7441 \\
life & 0.4204 & 0.1864 & 2.255 & 0.0241
\end{tabular}\(\quad\) *
```

Estimated coefficient for interaction effect: -0.1813

1e)

```
> anova(fit1,fit)
    no.par AIC logLik LR.stat df Pr(>Chisq)
fit 5 109.1 -49.549
fit1 6 110.5 -49.252 0.5935 1 0.4411
```

LR-stat $=0.594 ;$ P-value $=0.441$

Exercise 2: Auto Accidents Injuries:

R code (using package "VGAM"):

```
> accident <- read.table("accident.dat", header=TRUE)
> accident
    gender location seatbelt y1 y2 y3 y4 y5
1 female urban no 7287 175 720 91 10
2 female urban yes 11587 126 577 48 8
3 female rural no 3246 73 710 159 31
4 female rural yes 6134 94 564 82 17
5 male urban no 10381 136 566 96 14
6 male urban yes 10969 83 259 37 1
7 male rural no 6123 141 710 188 45
8 male rural yes 6693 74 353 74 12
> require(VGAM)
```

```
> fit <- vglm(cbind(y1,y2,y3,y4,y5) ~ gender + location + seatbelt + location*seatbelt,
data=accident, family=cumulative(parallel=TRUE))
> summary(fit)
Coefficients:
    Estimate Std. Error z value
(Intercept):1 1.17775 0.028486 41.3442
(Intercept):2 1.35217 0.028837 46.8895
(Intercept):3 3.21971 0.041260 78.0344
(Intercept):4 5.12666 0.088571 57.8820
gendermale 0.54625 0.027211 20.0748
locationurban 0.82326 0.034756 23.6871
seatbeltyes 0.88457 0.038363 23.0577
locationurban:seatbeltyes -0.12442 0.054765 -2.2718
```

2a) R uses a different coding for the dummy variables than SAS. (By default, SAS treats the last category as the reference category, while R uses the first.) For males in urban areas wearing seat belts, the estimated cumulative logits and probabilities are:

```
logit[ P(resp = not injured) ] = 1.1777 + 0.5462 + 0.8233 + 0.8846-0.1244 = 3.3074
```

$P($ resp $=$ not injured $)=\exp (3.3074) /[1+\exp (3.3074)]=0.965$
logit[P(resp \leq not transported) $]=1.3522+0.5462+0.8233+0.8846-0.1244=3.4818$
$P($ resp \leq not transported $)=\exp (3.4818) /[1+\exp (3.4818)]=0.970$

2b) With the parameterization in R: Cumulative log-odds for female drivers - Cumulative log-odds for male drivers $=-\beta_{1}$ (for any location and seatbelt use), estimated as -0.546 . Hence, the estimated cumulative log-odds ratio is equal to $\exp (-$ 0.546) $=0.58$. Cannot compute profile likelihood interval directly (package ordinal below can compute profile likelihood intervals). Wald interval for β_{1} from output above: $0.5462+/-1.96 * 0.0272=[0.49 ; 0.60]$. Wald interval for $\exp \left(-\beta_{1}\right): \exp \{$ $-[0.49 ; 0.60]\}=[0.55 ; 0.61]$.

2c) For any gender and rural location: Cumulative log odds for those using seat belt - Cumulative log-odds for those not using seat belt $=\beta_{3}$, estimated as 0.8846 . Estimated cumulative odds ratio $=\exp (0.8846)=2.42$.

For any gender and urban location: Cumulative log odds for those using seat belt - Cumulative log-odds for those not using seat belt $=\beta_{3}+\beta_{4}$, estimated as $0.8846+(-0.1244)=0.7602$. Estimated cumulative odds ratio $=\exp (0.7602)=2.14$.

R code (using package "ordinal"):
 (Package "ordinal" uses the latent variable coding, i.e, linear predictor $=\alpha_{j}-\beta x!$)

```
> require("reshape2")
> accident.long <- melt(accident,1:3)
> colnames(accident.long)[4:5] <- c("resp","count")
> accident.long$resp = factor(accident.long$resp, labels=c("not injured","not
    transported","not hospitalized", "hospitalized", "died"), ordered=TRUE)
> head(accident.long) gender location seatbelt resp count
1 female urban no not injured }728
2 \text { female urban no not transported } 1 7 5
3 \text { female urban no not hospitalized } 7 2 0
4 \text { female urban no hospitalized 91}
5 \text { female urban no died 10}
6 \text { female urban yes not injured } 1 1 5 8 7
> require(ordinal)
> fit <- clm(resp ~ gender + location + seatbelt + location*seatbelt, weights= count,
data=accident.long)
```

```
> summary(fit)
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error z value \(\operatorname{Pr}(>|z|)\) & \\
gendermale & -0.54625 & 0.02725 & -20.048 & \(<2 e-16 * * *\) \\
locationurban & -0.82326 & 0.03483 & -23.637 & \(<2 e-16 * * *\) \\
seatbeltyes & -0.88457 & 0.03848 & -22.985 & \(<2 e-16 * * *\) \\
locationurban: seatbeltyes & 0.12442 & 0.05479 & 2.271 & 0.0232 **
\end{tabular}
_--
Threshold coefficients:
\begin{tabular}{lrrr} 
& Estimate & Std. Error z value \\
not injured|not transported & 1.17775 & 0.02865 & 41.10 \\
not transported|not hospitalized & 1.35217 & 0.02901 & 46.61 \\
not hospitalized|hospitalized & 3.21971 & 0.04137 & 77.82 \\
hospitalized|died & 5.12666 & 0.08862 & 57.85
\end{tabular}
```

2a) R uses a different coding for the dummy variables than SAS: For males in urban areas wearing seat belts, the estimated cumulative logits and probabilities are:
logit $[P($ resp $=$ not injured $)]=1.1777-(-0.5462)-(-0.8233)-(-0.8846)-0.1244=3.3074$
$P($ resp $=$ not injured $)=\exp (3.3074) /[1+\exp (3.3074)]=0.965$
$\operatorname{logit}[P($ resp \leq not transported $)]=1.3522-(-0.5462)-(-0.8233)-(-0.8846)-0.1244=3.4818$
$\mathrm{P}($ resp \leq not transported $)=\exp (3.4818) /[1+\exp (3.4818)]=0.970$

The corresponding response probabilities are:

	gender	location	seatbelt	resp	count	fitted(fit)
1	female	urban	no	not injured	7287	0.8809034672
2	female	urban	no	not transported	175	0.0171185026
26	male	urban	yes	not injured	10969	0.9646825779
27	male	urban	yes	not transported	83	0.0054842229
28	male	urban	yes	not hospitalized	259	0.0251045854
29	male	urban	yes	hospitalized	37	0.0040234217
30	male	urban	yes	died	1	0.0007051921
40	male	rural	yes	died	12	0.0014174344

2b) With the parameterization in R and the ordinal package: Cumulative log-odds for female drivers - Cumulative logodds for male drivers $=\beta_{1}$ (for any location and seatbelt use), estimated as -0.546 . Hence, the estimated cumulative logodds ratio is equal to $\exp (-0.546)=0.58$.

2c) For any gender and rural location: Cumulative log odds for those using seat belt - Cumulative log-odds for those not using seat belt $=-\beta_{3}$ (remember, package "ordinal" uses $\alpha_{j}-\beta x$), estimated as $-(-0.8846)$. Estimated cumulative odds ratio $=\exp (0.8846)=2.42$.

For any gender and urban location: Cumulative log odds for those using seat belt - Cumulative log-odds for those not using seat belt $=-\beta_{3}-\beta_{4}$, estimated as $-(-0.8846)-0.1244=0.7602$. Estimated cumulative odds ratio $=\exp (0.7602)=$ 2.14.

Exercise 3: Happiness and Family Income:

```
R code (using package "VGAM"):
> happy <- read.table("happiness.dat", header=TRUE)
> happy
    income very pretty not
1 3 272 294 49
2 2 454 835 131
3 1 185 527 208
> ## VGAM Package
> require(VGAM)
> fit <- vglm(cbind(very,pretty,not) ~ income, data=happy, family =
cumulative(parallel=TRUE))
> summary(fit)
Coefficients:
    Estimate Std. Error z value
(Intercept):1 -2.04610 0.111294 -18.385
(Intercept):2 0.76130 0.104935 7.255
income 0.63107 0.051997 12.137
Residual deviance: 16.18668 on 3 degrees of freedom
Log-likelihood: -28.22221 on 3 degrees of freedom
```

3a) Treating income as quantitative with scores (1=below average, $2=$ average, $3=$ above average), the estimated coefficient for income equals 0.631.

3b)

```
> fit1 <- vglm(cbind(very,pretty,not) ~ factor(income), data=happy, family =
cumulative(parallel=TRUE))
> summary(fit1)
Coefficients:
\begin{tabular}{lrrr} 
& Estimate & Std. Error & z value \\
(Intercept):1 & -1.48905 & 0.073324 & -20.3077 \\
(Intercept):2 & 1.32736 & 0.071596 & 18.5396 \\
factor (income)2 & 0.78681 & 0.085370 & 9.2164 \\
factor (income)3 & 1.23694 & 0.104841 & 11.7982
\end{tabular}
Residual deviance: 10.84597 on 2 degrees of freedom
Log-likelihood: -25.55186 on 2 degrees of freedom
```

For families with below average income (income=1), the estimated odds of being very or pretty happy (instead of not happy) are $\exp (1.32736)=3.77$, while they $\operatorname{are} \exp (1.32736+0.78681)=8.28$ for families with average income and $\exp (1.32736+1.23694)=12.99$ for families with above average income. l.e., the odds of being very or pretty happy are $\exp (1.23694)=3.44$ times higher for families with above average income than those with below average income.

One can compare the two models (model in 3 b is special case of model in 3 a with beta1-2*beta2 + beta $3=0$) through a likelihood ratio test (= difference in the deviance):

```
> LR <- -2*(logLik(fit)-logLik(fit1))
> LR
[1] 5.34071
> 1-pchisq(LR,df=1)
[1] 0.02083299
> deviance(fit1) - deviance(fit)
[1] -5.34071
```

3c) Plot the models in 3a and 3b on the logit scale. If possible, include the sample cumulative logits in your plot to check the fit of the model. Also plot the fitted cumulative and category probabilities for the model in part a.
> \#\#\# fitted logits
> fit.logit <- predict(fit)
> name <- colnames(fit.logit)
> attach (happy)
> plot(fit.logit[,1]~income, type="b", col="red", ylim=c(-2,4.5), ylab="Fitted Cumulative
Logit", xlab="Family Income", main="Proportional odds model $\backslash n$ with income as
quantitative")
> lines(fit.logit[,2]~income, type="b", col="blue")
> \#\# add sample logits:
> n <- rowSums (happy[,2:4]) \#total sample size
> sample.cumprob1 <- happy[,2]/n
> sample.cumprob2 <- rowSums (happy[,2:3])/n
> sample.logit1 <- logit(sample.cumprob1)
> sample.logit2 <- logit(sample.cumprob2)
> points(sample.logit1~income, pch="+", col="red")
> points(sample.logit2~income, pch="+", col="blue")
> legend("top", legend=name, lty=c(1,1), col=c("red","blue"), ncol=2, bty=n)

Proportional odds model

 with income as quantitative

```
> fit1.logit <- predict(fit1)
> plot(fitl.logit[,1]~income, type="b", col="red", ylim=c(-2,4.5), ylab="Fitted Cumulative
Logit", xlab="Family Income", main="Proportional odds model \n with income as qualitative")
> lines(fit1.logit[,2]~income, type="b", col="blue")
> points(sample.logitl~income, pch="+", col="red")
> points(sample.logit2~income, pch="+", col="blue")
> legend("top", legend=name, lty=c(1,1), col=c("red","blue"), ncol=2, bty=n)
```

Proportional odds model
with income as qualitative


```
> ### fitted cumulative Probs
> fit.cumProb <- predict(fit, untransform=TRUE)
> name <- colnames(fit.cumProb)
> plot(fit.cumProb[,1]~income, type="b", col="red", ylim=c(0,1), ylab="Fitted Cumulative
Probability", xlab="Family Income", main="Proportional odds model \n with income as
quantitative")
> lines(fit.cumProb[,2]~income, type="b", col="blue")
> legend("bottomright", legend=name,lty=c(1,1),col=c("red","blue"), ncol=1, bty=n)
```

Proportional odds model with income as quantitative


```
> ### fitted category Probs
> fit.prob <- predict(fit, type="response")
> name <- colnames(fit.prob)
> plot(fit.prob[,1]~income, type="b", col="red", ylim=c(0,1), ylab="Fitted Probability",
xlab="Family Income", main="Proportional odds model \n with income as quantitative")
> lines(fit.prob[,2]~income, type="b", col="blue")
```

```
> lines(fit.prob[,3]~income, type="b", col="green")
> legend("topright", legend=name,lty=c(1,1,1),col=c("red","blue","green"), ncol=1)
```


Proportional odds model with income as quantitative

Family Income

3d) Fit a model that allows non-proportional odds (treating income as quantitative) and plot it. Check if the proportional odds assumption is reasonable.

```
> fit2 <- vglm(cbind(very,pretty,not) ~ income, data=happy, family =
cumulative(parallel=FALSE))
> summary(fit2)
Coefficients:
    Estimate Std. Error z value
(Intercept):1 -1.94760 0.122263 -15.9295
(Intercept):2 0.57208 0.147450 3.8798
income:1 0.58405 0.057518 10.1543
income:2 0.74798 0.083775 8.9285
> ### fitted logits
> fit2.logit <- predict(fit2)
> name <- colnames(fit2.logit)
> plot(fit2.logit[,1]~income, type="b", col="red", ylim=c(-2,4.5), ylab="Fitted Cumulative
Logit", xlab="Family Income", main="Model without proportional odds \n with income as
quantitative")
> lines(fit2.logit[,2]~income, type="b", col="blue")
> ## add sample logits:
> points(sample.logitl~income, pch="+", col="red")
> points(sample.logit2~income, pch="+", col="blue")
> legend("top", legend=name,lty=c(1,1),col=c("red","blue"), ncol=2, bty=n)
```

Model without proportional odds with income as quantitative

The lines appear are almost parallel, so the proportional odds assumption seems to be justified. To test the proportional odds assumption via a liklihood ratio test:

```
> LR <- -2*(logLik(fit) - logLik(fit2))
> LR
[1] 3.302767
> 1 - pchisq(LR,df=1)
[1] 0.0691633
```

3e) Test goodness of fit for the proportional odds model when treating income as quantitative:

```
> #Goodness of Fit
> obs <- happy[2:4]
> n <- rowSums(obs)
> exp <- apply(fitted(fit),2,function(col) col*n)
> X2 <- sum((obs-exp)^2/exp)
>G2 <- 2*sum(obs* log(obs/exp))
> X2
[1] 15.84874
> 1-pchisq(X2,df=6-3)
[1] 0.001217895
> G2
[1] 16.18668
> 1-pchisq(G2,df=6-3)
[1] 0.001038301
```

Note: The G2 statistic is the deviance and included in the output from summary(fit), see above.

3f) Adjacent Category Logit Model

```
> # by default, VGLM fits log(P[Y=j+1]/P[Y=j])
> # reverse=TRUE reverses this to log(P[Y=j]/P[Y=j+1])
> fit3 <- vglm(cbind(very,pretty, not) ~ income, data=happy, family = acat(reverse=TRUE,
parallel=TRUE))
> summary(fit3)
Coefficients:
    Estimate Std. Error z value
(Intercept):1 -1.61160 0.098133 -16.4226
(Intercept):2 0.56484 0.088657 6.3711
income 0.51297 0.043311 11.8440
Names of linear predictors: log(P[Y = 1]/P[Y = 2]), log(P[Y = 2]/P[Y = 3])
```

Fitted category probabilities for cumulative logit model with proportional odds and adjacent category model are similar:

| $>$ | cbind(income, fitted(fit)) | |
| :--- | ---: | ---: | ---: |
| income | very | pretty | not

Exercise 4: Continuation-Ratio Model for Happiness and Family Income:

R code (using package "VGAM"):

The continuation-ratio model is available via the family function 'family=sratio' in VGAM ('family=cratio' is also an option). For interpretation of effect see the SAS solutions.

```
> fit5 <- vglm(cbind(very,pretty,not) ~ income, data=happy, family=sratio(parallel=TRUE))
> summary(fit5)
Coefficients:
    Estimate Std. Error z value
(Intercept):1 -1.93324 0.104364 -18.524
(Intercept):2 0.45830 0.097179 4.716
income 0.57655 0.047988 12.015
Names of linear predictors: logit(P[Y = 1|Y> = 1]), logit(P[Y = 2|Y> = 2])
Residual deviance: 14.97402 on 3 degrees of freedom
```

Compare fitted category probabilities for continuation-ratio model and cumulative logit model:

```
> cbind(income,fitted(fit5))
    income very pretty not
1 3 0.4492813 0.4951859 0.05553285
2 2 0.3142920 0.5716105 0.11409753
3 1 0.2047798 0.5867573 0.20846296
cbind(income,fitted(fit))
    income very pretty not
1 3 0.4618501 0.4724380 0.06571191
2 2 0.3134663 0.5697697 0.11676397
3 1 0.1954419 0.6055286 0.19902947
```


Exercise 5: Probit Model

R code (using package VGAM):

```
> fit.probit <- vglm(cbind(very,pretty,not) ~ income, data=happy,
    family=cumulative(link=probit, parallel=TRUE))
> summary(fit.probit)
Coefficients:
            Estimate Std. Error z value
(Intercept):1 -1.20722 0.063263 -19.0826
(Intercept):2 0.46775 0.060703 7.7056
income 0.36365 0.029918 12.1552
Names of linear predictors: probit(P[Y< = 1]), probit(P[Y< = 2])
Residual deviance: 15.87322 on 3 degrees of freedom
```

5a) Estimated effect $=0.3636$
5c) Plot the fitted cumulative probabilities for in terms of income for the logit and probit model.

```
> fit.cumProb.clogit <- predict(fit, untransform=TRUE)
> fit.cumProb.cprobit <- predict(fit.probit, untransform=TRUE)
> plot(fit.cumProb.clogit[,1]~income, type="b", lwd=2, col="blue", ylim=c(0,1),
    ylab="Fitted Cumulative Probability", xlab="Family Income", main="Comparison of
    cumulative \n logit and probit model")
> lines(fit.cumProb.clogit[,2]~income, type="b", lwd=2, col="red")
> lines(fit.cumProb.cprobit[,1]~income, type="b", lwd=2, col="blue")
> lines(fit.cumProb.cprobit[,2]~income, type="b", lwd=2, col="blue")
> legend("bottomright", legend=c("cum. logit","cum. probit"),lty=c(1,1),lwd=c(2,2),
    col=c("red","blue"), ncol=1, bty=n)
> ## add sample logits:
> n <- rowSums(happy[,2:4]) #total sample size
> sample.cumprob1 <- happy[,2]/n
> sample.cumprob2 <- rowSums(happy[,2:3])/n
> sample.logit1 <- logit(sample.cumprob1)
> sample.logit2 <- logit(sample.cumprob2)
> points(sample.logit1~income, pch="+", col="red")
> points(sample.logit2~income, pch="+", col="red")
```


Comparison of cumulative

logit and probit model

