
Categorical Data Analysis Homework 3 Solutions

1. (a) Based on an exact test, we are 95% con�dent that the true percentage of subjects su�ering
from nervousness is between 0.58% and 5.36%. Based on the asymptotic score interval, we
are 95% con�dent that the true percentage lies between 0.83% and 5.34% - a slightly narrower
interval. The exact con�dence interval guarantees 95% coverage, while for the score interval,
this is only guaranteed in the limit. In any case, for these data (n=188), the two are pretty
similar.

> binom.test(x=4,n=188)$conf.int*100

[1] 0.5826868 5.3577899

> prop.test(x=4,n=188,correct=FALSE)$conf.int*100

[1] 0.8304417 5.3420816

(b) i. Using the asymptotic Chi-squared test (for one sample), we obtain a score statistic of
X2 = 34.1(df = 3), and a corresponding P-value less than 0.0001. There is su�cient
evidence (P<0.0001) that the true proportions deviate from the ones speci�ed.

> chisq.test(x=c(175,5,2,6), p=c(0.98, 0.01, 0.005, 0.005))

Chi-squared test for given probabilities

data: c(175, 5, 2, 6)

X-squared = 34.0745, df = 3, p-value = 1.911e-07

ii. We'll �rst approximate the P-value for the exact test by generating 100,000 multinomial
tables based on the hypothesized multinomial probabilities. This results in a P-value of
0.00018, which is a pretty good approximation of the true exact P-value, and leads to
the same conclusion as in part a.

> chisq.test(x=c(175,5,2,6), p=c(0.98, 0.01, 0.005, 0.005),

+ simulate.p.value=TRUE,B=100000)

Chi-squared test for given probabilities with simulated p-value (based

on 1e+05 replicates)

data: c(175, 5, 2, 6)

X-squared = 34.0745, df = NA, p-value = 0.00018

We can also obtain the exact P-value (and not an approximation of it) by enumerating
all multinomial tables with n = 188. The following code will do this. Note that it may
take several minutes to run, since it needs to run through all

(
188+4−1

4−1

)
= 1, 143, 135

possible multinomial tables with n = 188. The exact P-value equals 0.00016, i.e., only
0.016% of all possible tables exhibit a Chi-square statistic as large or larger than the
one we observed, assuming the null hypothesis is true. This is rather exceptional, so we
don't believe the null hypothesis is true. This exact P-value gives the same conclusion
as in part a: There is su�cient evidence (exact P = 0.00016) that the true proportions
deviate from the ones speci�ed.

> install.packages("EMT")

> require(EMT)
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> X2.obs <- chisq.test(x=c(175,5,2,6),

+ p=c(0.98, 0.01, 0.005, 0.005))$statistic

> tables <- findVectors(groups=4,size=188)

> head(tables,10)

[,1] [,2] [,3] [,4]

[1,] 0 0 0 188

[2,] 0 0 1 187

[3,] 0 1 0 187

[4,] 1 0 0 187

[5,] 0 0 2 186

[6,] 0 1 1 186

[7,] 1 0 1 186

[8,] 0 2 0 186

[9,] 1 1 0 186

[10,] 2 0 0 186

> nullprobs <- apply(tables, 1, dmultinom, size=188,

+ prob = c(0.98, 0.01, 0.005, 0.005))

> tail(nullprobs)

[1] 0.004599309 0.012248159 0.025952856 0.041022256 0.042996589 0.022413116

> X2 <- apply(tables, 1, function(x) chisq.test(x,

+ p=c(0.98, 0.01, 0.005, 0.005))$statistic)

> tail(X2)

[1] 7.066218 4.270951 2.550369 1.904472 2.333261 3.836735

> exact.P <- sum((X2>=X2.obs)*nullprobs)

> exact.P

[1] 0.0001643578

2. (a) Here, the multinomial probabilities are given by π1 = θ2, π2 = 2θ(1− θ), π3 = (1− θ)2, which
leads to the following likelihood:

L(θ|n1, n2, n3) = log

(
n!

n1!n2!n3!

)
+ 2n1 log(θ) + n2 log(2θ(1− θ)) + 2n3 log(1− θ) (1)

Taking the derivative with respect to θ, we obtain

d

dθ
L(θ|n1, n2, n3) =

2n1

θ
+ n2

2− 4θ

2θ(1− θ)
− 2n3

1− θ

=
2n1

θ
+ n2

1− 2θ

θ(1− θ)
− 2n3

1− θ

=
2n1

θ
+ n2

(
1

θ
− 1

1− θ

)
− 2n3

1− θ
(partial fractions)

=
2n1 + n2

θ
− n2 + 2n3

1− θ
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To obtain the MLE θ̂, we set the derivative equal to 0 to obtain:

2n1 + n2

θ
− n2 + 2n3

1− θ
= 0 =⇒ 2n1 + n2

θ
=

n2 + 2n3

1− θ

=⇒ θ̂ =
2n1 + n2

2n1 + 2n2 + 2n3

(We should check if this truly is a maximum by plugging it into the second derivative.)

(b) Taking the second derivative of the log-likelihood, we obtain

d2

dθ2
L(θ|n1, n2, n3) = −2n1 + n2

θ2
− n2 + 2n3

(1− θ)2

− d2

dθ2
L(θ|n1, n2, n3) =

2n1 + n2

θ2
+

n2 + 2n3

(1− θ)2

To �nd the information matrix, we take the expected value:

E

[
− d2

dθ2
L(θ|n1, n2, n3)

]
=

E(2n1 + n2)

θ2
+

E(n2 + 2n3)

(1− θ)2

=
2nθ2 + 2nθ(1− θ)

θ2
+

2nθ(1− θ) + 2n(1− θ)2

(1− θ)2

= 2n

(
θ2 + θ(1− θ)

θ2
+

θ(1− θ) + (1− θ)2

(1− θ)2

)
= 2n

(
1

θ
+

θ − θ2 + 1− 2θ + θ2

(1− θ)2

)
= 2n

(
1

θ
+

1

1− θ

)
=

2n

θ(1− θ)

So we have I(θ) = 2n
θ(1−θ)

. The asymptotic variance of θ̂ is I−1(θ) = θ(1−θ)
2n

, implying a

standard deviation of
√

θ(1−θ)
2n

.

If we want to estimate this, we can evaluate this at θ̂, giving

√
θ̂(1−θ̂)

2n
as the standard error.

If we have n1 = 4, n2 = 8, n3 = 15, we have θ̂ = 0.2962963, and our estimate of the standard
error of θ̂ is 0.06213856.

> n1 <- 4

> n2 <- 8

> n3 <- 15

> n <- sum(c(n1,n2,n3))

> theta.hat <- (2*n1 + n2)/(2*n1 + 2*n2 + 2*n3)

> se <- sqrt( theta.hat*(1-theta.hat)/(2*n) )
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> theta.hat - 1.96*se

[1] 0.1745047

> theta.hat + 1.96*se

[1] 0.4180879

(c) In general, we will have k− 1 = 3− 1 = 2 unknown parameters, since if we know π1 and π2,
we know that π3 = 1−π1−π2. Under the null hypothesis, θ is the only unknown parameter,
since once we know θ, we know what the multinomial probabilities are. This implies one
(= 2− 1) degree of freedom for the likelihood ratio test we're about to conduct.

Under the null, the likelihood is as given in (1) and depends on just the one parameter θ.
Clearly, the likelihood is maximized when θ = θ̂, as we showed in 3a. So, the maximized
likelihood under H0 is (1) with θ replaced by θ̂ = 0.2962963. The maximized likelihood
in general is the regular multinomial likelihood with πi replaced by ni/n (i.e., the MLE's
in general). Compute these two likelihoods, take their ratio, take −2 times the log of that
ratio and you have the value for the Likelihood Ratio Statistic G2. Another way to get G2

is to note that under H0, the MLE for the multinomial probabilities are π̂10 = θ̂2, π̂20 =
2θ̂(1− θ̂), π̂30 = (1− θ̂)2. This gives expected counts under the null of µi0 = nπ̂i0. Using the
fact that the likelihood ratio statistic G2 has form

G2 = 2
∑

ni log

(
ni

µi0

)
we get

> probs.null <- c(theta.hat^2, 2*theta.hat*(1-theta.hat), (1-theta.hat)^2)

> probs.null

[1] 0.0877915 0.4170096 0.4951989

> expected <- n*probs.null

> observed <- c(n1,n2,n3)

> G2 <- 2*sum(observed*log(observed/expected))

> G2

[1] 2.16827

> 1 - pchisq(G2, df = 1)

[1] 0.1408847

We get a p-value of 0.14, implying that we do not have su�cient evidence to reject the null
hypothesis that the multinomial cell probabilities have the pattern described above.
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