
1

 Prof. Klingenberg

R code for inference (confidence interval, hypothesis testing, power) about a
single proportion.

Hypothesis testing and P-values:

Suppose our data are such that out of a sample of n=180 trials (=students), 120 resulted in successes
(=indicated that they are in favor of lowering the drinking age to below 18 years). Our goal is to test
hypotheses and construct confidence intervals about the true (unknown) proportion of successes
(proportion of students who are in favor of lowering the drinking age) in the entire population. Let’s look
at a two-sided test of the (alternative) hypothesis that the true proportion is different from 0.6 first. If
you want to get the P-value for a two-sided test of the null hypothesis H0: versus the alternative
hypothesis HA: , use the following R command. (The P-value and relevant part of the output is
highlighted below)

> prop.test(x=120, n=180, p=0.6, correct=FALSE)

 1-sample proportions test without continuity correction

data: 120 out of 180, null probability 0.6

X-squared = 3.3333, df = 1, p-value = 0.06789

alternative hypothesis: true p is not equal to 0.6

95 percent confidence interval:

 0.5949523 0.7314158

sample estimates:

 p

0.6666667

I.e., the P-value for the two-sided test is 0.06789. At a significance level of (alpha=) 5%, we have
insufficient evidence (P-value > 0.05) to reject the null hypothesis. There is insufficient evidence to
conclude that the true proportion of students who are in favor of lowering the drinking age is different
from 0.6.

For this problem, it’s probably more natural to ask: “Is the proportion of students who want to lower the
drinking age significantly larger than 60%?” This requires a one-sided test. For getting the (one-sided) P-
value for the one-sided test when the alternative hypothesis has the form HA: , type

> prop.test(x=120,n=180, p=0.6, alternative="greater", correct=FALSE)

 1-sample proportions test without continuity correction

data: 120 out of 180, null probability 0.6

X-squared = 3.3333, df = 1, p-value = 0.03394

alternative hypothesis: true p is greater than 0.6

95 percent confidence interval:

 0.6067808 1.0000000

sample estimates:

 p

0.6666667

2

Conclusion: At a 5% significance level, there is sufficient evidence (P-value < 5%) to reject the null
hypothesis and conclude that the true proportion of students in favor of lowering the drinking age is
significantly larger than 60%. (Note: The conclusion looks different at a 2.5% significance level.)

To get the P-value when the alternative hypothesis has the form HA: , use alternative=”less”.
 (Wouldn’t make much sense to test for our example, as the sample proportion is already larger than
0.6!)

Confidence Intervals:

The following code gives the confidence interval for a single proportion for the data on the proportion of
students favoring lowering the drinking age (n=180, # of students in favor: 120). The confidence interval
is highlighted.

> prop.test(x=120, n=180, correct=FALSE)

 1-sample proportions test without continuity correction

data: 120 out of 180, null probability 0.5

X-squared = 20, df = 1, p-value = 7.744e-06

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

 0.5949523 0.7314158

sample estimates:

 p

0.6666667

Conclusion: We are 95% confident that the interval from 59.5% to 73.1% captures the true proportion of
students who are in favor of lowering the drinking age. You can also say: We are 95% confident that the
true proportion of students in favor of lowering the drinking age is at least 59.5% and at most 73.3%.
Note that 60% is included in the confidence interval, that’s why we could not reject the hypothesis H0:
 In this regard, the confidence interval is much more informative than the hypothesis test. It not
only tells you whether you can reject or not reject the null hypothesis, but it also gives you information
about the range (size) of plausible values of the unknown proportion.

If you want the 90% confidence interval, type (I just show the relevant output):
> prop.test(x=120,n=180, conf.level=0.90, correct=FALSE)

…

90 percent confidence interval:

 0.6067808 0.7216165

…

If you want to get a one-sided confidence interval, i.e., just a lower bound or just an upper bound, use
the option alternative=…:

3

> prop.test(x=120,n=180, alternative="greater", correct=FALSE) #this

gives LOWER bound

…

95 percent confidence interval:

 0.6067808 1.0000000

…

Conclusion: We are 95% confident that the true proportion of students favoring lowering the drinking
age is at least 60.7%. (So, slightly larger than 60%, which agrees exactly with our one-sided test above!)

Often, for one-sided confidence intervals, we use a level of 97.5%, which you can easily get by typing:
> prop.test(x=120,n=180, alternative="greater", conf.level=0.975,

correct=FALSE)

…

97.5 percent confidence interval:

 0.5949523 1.0000000

…

Conclusion: We are 97.5% confident that the true proportion of students favoring lowering the drinking
age is at least 59.5%. (So, slightly less than 60%, which is why we couldn’t reject the hypothesis H0:
 in favor of the alternative hypothesis HA: at the 2.5% significance level!)

For an upper bound (not really relevant for the example here), use:
> prop.test(x=120,n=180, alternative="less", correct=FALSE)

…

95 percent confidence interval:

 0.0000000 0.7216165

…

Note: The underlying formula (for the two-sided interval) that R is using to compute this confidence
interval (called the Wilson score interval for a single proportion) is given by this:

where is the sample proportion and is the 1-/2 quantile from the standard normal distribution

(i.e., 1.96 when =5%) However, you do not need to manually compute the confidence interval using

this formula, it is automatically done in the prop.test () function in R!

4

Power:

Let’s pretend that the true proportion = 0.7. We are interested in the power of our test to detect this,
i.e., what is the power (=probability of rejecting the null when it is false (or when the alternative is true))
of our test to reject H0: in favor of the alternative hypothesis HA: when the true
proportion = 0.7.

Compute right-hand side of formula (see class notes):
> null.pi=0.6

> true.pi=0.7

> n=180

> alpha=0.05

> z.q=qnorm(1-alpha)

> z.q

[1] 1.644854

> luis = (z.q*sqrt(null.pi*(1-null.pi)/n) + null.pi - true.pi) /

sqrt(true.pi*(1-true.pi)/n)

> luis

[1] -1.169278

> 1-pnorm(luis)

[1] 0.8788541

So, the probability to reject H0 is equal to 87.9% when the true proportion is equal to 0.7.
Now, find the power for a bunch of values for the true proportion, let’s say from 0.6 to 0.8. You can
repeat the above calculation, but it is best to do this with a function in R where you just pass the
arguments. Just copy and paste this function into R:

power <- function(null.pi, true.pi, n, alpha=0.05, alternative="not equal") {

 z.q = switch(alternative,

 "less" = qnorm(alpha),

 "greater" = qnorm(1-alpha),

 qnorm(1-alpha/2)

)

 luis = (z.q*sqrt(null.pi*(1-null.pi)/n) + null.pi - true.pi) / sqrt(true.pi*(1-true.pi)/n)

 if (alternative=="not equal") {

 z.q = qnorm(alpha/2)

 luis1 = (z.q*sqrt(null.pi*(1-null.pi)/n) + null.pi - true.pi) / sqrt(true.pi*(1-true.pi)/n)

 }

 pow = switch(alternative,

 "less" = pnorm(luis),

 "greater" = 1-pnorm(luis),

 pnorm(luis1) + (1-pnorm(luis))

)

 return(pow)

}

For example, if we call this function with the same setup as before, we get the same answer:
> power(null.pi=0.6, true.pi=0.7, n=180, alternative="greater")

[1] 0.8788541

But now we can call it for different true.pi values:
> power(null.pi=0.6, true.pi=0.6, n=180, alternative="greater")

[1] 0.05 (Why?)
power(null.pi=0.6, true.pi=0.65, n=180, alternative="greater")

[1] 0.3885823

> power(null.pi=0.6, true.pi=0.68, n=180, alternative="greater")

[1] 0.716831

5

> power(null.pi=0.6, true.pi=0.72, n=180, alternative="greater")

[1] 0.9633536

In fact, we can get more values by typing
> power.seq = power(null.pi=0.6, true.pi=seq(0.6,0.75,0.005), n=180,

alternative="greater")

> power.seq

 [1] 0.05000000 0.06537469 0.08425147 0.10703758 0.13407596

 [6] 0.16561123 0.20175590 0.24246009 0.28748818 0.33640617

[11] 0.38858229 0.44320297 0.49930442 0.55581851 0.61162996

[16] 0.66564004 0.71683104 0.76432552 0.80743429 0.84568867

[21] 0.87885412 0.90692464 0.93009951 0.94874609 0.96335362

[26] 0.97448362 0.98272238 0.98863992 0.99275858 0.99553238

[31] 0.99733712

> plot(power.seq~seq(0.6,0.75,0.005), type="l", main="Power for HA:

pi>true.pi", xlab="true.pi", ylab="Power")

One can also plot power for fixed true.pi, but varying n, to see the effect of the sample size.
> n.seq = power(null.pi=0.6, true.pi=0.7, n=seq(50,200,10),

alternative="greater")

> n.seq

 [1] 0.4147320 0.4728474 0.5268363 0.5766684 0.6223939

 [6] 0.6641283 0.7020363 0.7363179 0.7671962 0.7949070

[11] 0.8196915 0.8417895 0.8614353 0.8788541 0.8942595

[16] 0.9078522

> plot(n.seq~seq(50,200,10), type="l", main="Power for HA: pi>0.7",

xlab="sample size n", ylab="Power")

Finally, one can do the power plot for various values of n:

> power.seq.n1 = power(null.pi=0.6, true.pi=seq(0.6,0.75,0.005), n=80,

alternative="greater")

> power.seq.n2 = power(null.pi=0.6, true.pi=seq(0.6,0.75,0.005),

n=130, alternative="greater")

> power.seq.n3 = power(null.pi=0.6, true.pi=seq(0.6,0.75,0.005),

n=180, alternative="greater")

> plot(power.seq.n1~seq(0.6,0.75,0.005), type="l", main="Power for HA:

pi>true.pi", xlab="true.pi", ylab="Power", col="red", ylim=c(0,1))

> lines(power.seq.n2~seq(0.6,0.75,0.005), col="blue")

> lines(power.seq.n3~seq(0.6,0.75,0.005), col="green")

> legend("bottomright", c("n = 80", "n = 130", "n = 180"), col =

c("red","blue","green"), text.col = c("red","blue","green"),

lty=c(1,1,1))

6

