

1

STAT 201: Statistics & Data Analysis Prof. Klingenberg

Analyzing categorical variables in R

First we need to be able to read data files into R. Find the data file on Glow and download it to the

directory where you want to do your work. (In fact, you should create a directory just for this course;

call it “Stat201” or something along these lines). Note: I’m showing data from a previous class survey.

The output you get will be different but of course the R-commands are the same.

Reading in Files

Let’s start with the class survey data that I briefly talked about in class. As we discussed, the rows are

the cases and the columns are the variables. The file is in .csv format, so here is how the first ten entries

look like in plain text format:

nickname,gender,class,siblings,chocolate,friends,charges

Jean Luc,Male,Senior,2,Dark,84,85

Will I AM,Female,Junior,0,Milk,134,110

W,Male,Sophomore,2,White,1129,30

NA1,Female,Sophomore,0,Dark,20,30

Becky,Female,Sophomore,0,Dark,600,100

Nate,Male,Sophomore,2,Milk,274,32

None,Male,Sophomore,2,Dark,350,60

Nile,Male,Sophomore,0,Dark,229,50

DK,Male,Sophomore,1,Milk,979,100

To get this file into R, you’ll first need to download the file classsurvey.csv from Glow to your

computer. I recommend creating a directory, called Stat201 or something along this line, where you

save all your work. Then type the following:

> classdata = read.csv(file.choose())

R will now bring up a browser and you just click on the file you want. R reads the name of that file and

passes it to the function read.cvs. read.csv() is a function to read comma delimited files with column

headers. (If you don’t have column headers, you need to add the option header=FALSE to the

command. Type ?read.csv for help.) If you have files other than comma delimited you’ll need to use

read.delim (tab delimited) or read.table (space delimited). The delimiters are just what’s between the

variables that separates them. I find comma delimited files the safest to use, for its handling of missing

values or blanks. Note that most spreadsheet programs (such as Excel) can save a file in comma

delimited .csv format.

So now you should have a data frame (that’s the word R uses) named “classdata”. Typing classdata

displays it:
> classdata

 nickname gender class siblings chocolate friends charges

1 Jean Luc Male Senior 2 Dark 84 85

2

2 Will I AM Female Junior 0 Milk 134 110

3 W Male Sophomore 2 White 1129 30

4 NA1 Female Sophomore 0 Dark 20 30

5 Becky Female Sophomore 0 Dark 600 100

6 Nate Male Sophomore 2 Milk 274 32

...

Type

> summary(classdata)

to get a summary for each variable.

Notice how R knows how to summarize each variable. If it’s categorical, it just lists the frequencies of

each category (we call that a frequency table, displaying the distribution of the categorical variable). If

a variable is quantitative, R gives summary statistics (often called a 5 number summary). Watch out for

categories that are entered as all numbers – R will think they’re quantitative and you’ll have to override

that.

Some other useful commands:

> attach(classdata)

This is so we can refer to the variables in R directly. E.g.,

> siblings

displays the values of the variable siblings.

> detach(classdata)

Clears it out.

> siblings

See – now R doesn’t know where or what siblings is (because it’s within the data frame which we

detached). So, summing up, if you want to refer to variables by their name, you have to attach the

dataset first! This is easy to forget and a common mistake that can be very frustrating!

Doing Something!!

Let’s actually do something with these data. For categorical data, there’s not much one can do except

report the frequencies or relative frequencies and display them with bar charts, pie charts, contingency

tables etc. We know how to get the frequencies; attach the dataset first, so we can call variables by

their name, i.e., > attach(classdata)

> summary(chocolate)

dark milk white

 18 31 8

3

The command table() works, too, and is more useful:

> table1 = table(chocolate)

> table1

chocolate

 dark milk white

 18 31 8

To get percentages (of the total) in each cell you can use the function prop.table():
> table1.perc = 100*prop.table(table1)

> table1.perc

chocolate

 dark milk white

31.57895 54.38596 14.03509

Now for some useful graphs:

> barplot(table1)

OK, seems nice. You can also plot the bars horizontally by using the option horiz=TRUE:

> barplot(table1, horiz=TRUE)

If you want to change the order in which the categories are displayed, i.e., have category white first,

than milk and then dark, type

> barplot(table1[c(3,2,1)])

We can make it even nicer:

> barplot(table1, main="Class Survey", xlab="Preferred Type of

Chocolate", ylab="Count", col="purple")

Or, with percentage instead of counts on the y axis:

> barplot(table1.perc, main="Class Survey", xlab="Preferred Type of

Chocolate", ylab="Percent (%)", col="purple")

GEEK Alert: We can even give each bar its own color, depending on the “darkness” of the chocolate:

> barplot(table1.perc, main="Class Survey", xlab="Preferred Type of
Chocolate", ylab="Percent (%)", col=c("black", "chocolate4",

"white"))

(You find out about all the available colors by typing >colors())

4

An alternative display is a pie-chart:
> pie(table1, main="Distribution of

Preferred \n Type of Chocolate")

Use

> pie(table1, main="Distribution of

Preferred \n Type of Chocolate",

col=c("black","chocolate4","white"))

to override the default colors.

More than one Categorical Variable

Now it’s time to do something more interesting. Let’s look at two categorical variables together, say

gender and chocolate preference (assuming classdata is attached).

> table2 = table(gender,chocolate)

> table2

 chocolate

gender dark milk white

 f 10 20 2

 m 8 11 6

The table command creates frequency counts for each combination of levels of the two variables. (You

can do even more variables, or change the order of listening them, just try it out). It’s always a good

idea to look at the cell proportions, which you can get through

> prop.table(table2)

 chocolate

gender dark milk white

 f 0.17543860 0.35087719 0.03508772

 m 0.14035088 0.19298246 0.10526316

This is called the joint distribution.

You can get row (and column) percentages, i.e., the conditional distributions, i.e., the distribution of

preferred type of chocolate given the student was female (first row), and given that he was male

(second row) by typing

> 100*prop.table(table2,1) # multiplied by 100 to get percent instead

of proportion

 chocolate

gender dark milk white

 f 31.25 62.50 6.25

 m 32.00 44.00 24.00

5

If you don’t trust that, you can get it by “hand”, i.e., the conditional distribution of preferred type of

chocolate for females is:
> count.females = c(10,20,2)

> count.females / sum(count.females)

[1] 0.3125 0.6250 0.0625

To obtain the marginal distribution, you can use margin.table(), e.g., the marginal distribution for

gender:
> margin.table(table2,1)

gender

 f m

32 25

and the marginal distribution for chocolate:
> margin.table(table2,2)

chocolate

 dark milk white

 18 31 8

Some plots:

> barplot(table2, legend=TRUE, main="Chocolate

Preference \n by Gender")

This gives you a stacked barplot: For each chocolate type, the counts are

broken down by gender.

It is always a good idea to plot the proportions instead of the frequencies.

This is best done in a side-by-side barchart, where for each given type of

chocolate (think conditional distribution) the bars show the percent female

and male:

> barplot(100*prop.table(table2,2), legend=TRUE, main="Chocolate

Preference \n by Gender", beside=TRUE, ylim=c(0,80), ylab="Percent",

args.legend=list(x="topleft"))

The R code above shows some extra options to make the plot look nicer.

Leave them out initially to see what is happening.

Another very informative way to visualize the data is to construct a mosaic

plot:

> mosaicplot(table2,col=rainbow(3),main="Chocolate

Preference \n by Gender")

What if I don’t have the “raw data”?

There are certainly times when you won’t have a row for every entry for

categorical data, e.g., when you don’t have access to the raw, original

data. Someone already summarized and tabulated the data for you in a

6

contingency table format. For example, take a look at the table below on blood pressure. We have to

enter the part in light blue, the body of the table. Here’s how to do it:
> blood= matrix(c(27,48,23, 37,91,51, 31,93,73),nrow=3,ncol=3)

> blood

 [,1] [,2] [,3]

[1,] 27 37 31

[2,] 48 91 93

[3,] 23 51 73

Notice that I entered the data down the columns (but check out

the option byrow = TRUE). If you want labels for your row and columns, you can add them as

follows:
> rownames(blood) <- c("Low", "Normal", "High")

> colnames(blood) <- c("Under 30", "30-49", "Over 50")

> blood

 Under 30 30-49 Over 50

Low 27 37 31

Normal 48 91 93

High 23 51 73

Now, you can treat this as a table, similar to what we called table2 above,

and get row and column percentages and plots:

> 100*prop.table(blood,1)

 Under 30 30-49 Over 50

Low 28.42105 38.94737 32.63158

Normal 20.68966 39.22414 40.08621

High 15.64626 34.69388 49.65986

>barplot(blood, legend=TRUE)

The position of the legend is not optimal. One can adjust this using

>barplot(blood, legend=TRUE,

args.legend=list(x="topleft"))

Also, have a look at the frequencies through a side-by-side barchart:

> barplot(100*prop.table(blood,2),

ylab="Percent", legend=TRUE,

args.legend=list(x="topleft", ncol=3,

bty="n"),beside=TRUE, ylim=c(0,60))

or a mosaicplot:

> mosaicplot(t(blood),col=rainbow(3),

xlab="Age", ylab="Blood Pressure", main="")

