Categorical Data Analysis: Quiz 1

- Let y₁,..., y_n be i.i.d. from a density f(y; θ), where θ is an unknown parameter.
 (a) Write down the definition of the log-likelihood function L.
 - (b) Write down the definition of the score function s.
 - (c) Write down the definition of the information matrix (number) I.
 - (d) What is the definition of $\hat{\theta}$, the MLE of θ (use words, if you like to)?
 - (e) What is the asymptotic distribution of $\hat{\theta}$?
- 2. Let y_1, \ldots, y_n be i.i.d. from a Poisson distribution

$$f(y;\mu) = P(Y = y;\mu) = \frac{\mu^y e^{-\mu}}{y!}.$$

On HW3, you showed that the MLE for μ is given by $\hat{\mu} = \bar{y} = \frac{1}{n} \sum_{i} y_{i}$.

- (a) Find the score function $s(\mu)$ (show work).
- (b) In general, the expected value of the score function equals what value?
- (c) Show that the expected value of the score function for the Poisson equals zero.

- (d) Find the information matrix $I(\mu)$ (show work).
- (e) What is the asymptotic distribution of $s(\mu)$?
- (f) Find the score test statistic for testing $H_0: \mu = \mu_0$ and indicate when to reject the null hypothesis.

(g) Indicate how to find the score confidence interval for μ .