Categorical Data Analysis: Midterm 1, In-class

- 1. Let y_1, \ldots, y_n be iid from a Poisson distribution with mean μ . (20 points)
 - (a) Find the score statistics for testing the null hypothesis $H_0: \mu = \mu_0$ and indicate its asymptotic null distribution.
 - (b) Indicate how one would find a $100(1 \alpha)$ confidence interval for μ based on the test in part (a).
 - (c) In a Bayesian approach, let the prior distribution for μ be the gamma distribution with parameters a and b, i.e.,

$$g(\mu) = \frac{b^a}{\Gamma(a)} \mu^{a-1} e^{-b\mu}, \ a, b > 0.$$

For a single Poisson observation y, find the posterior distribution for μ and briefly sketch how to construct a Bayesian interval for μ .

- 2. Assume Poisson sampling over the 4 cells of a 2×2 contingency table with means μ_{ij} . (20 points)
 - (a) Write down the likelihood for the observed cell counts N_{11}, N_{12}, N_{21} and N_{22}
 - (b) Let the row totals be $N_{i+} = N_{i1} + N_{i2}$, i = 1, 2. What is the distribution of N_{1+} and what is the distribution of N_{2+} ?
 - (c) Argue that N_{1+} and N_{2+} are independent.
 - (d) Find the conditional distribution of the cell counts N_{ij} given the row margins $N_{1+} = n_{1+}$ and $N_{2+} = n_{2+}$.
 - (e) This corresponds to what type of sampling, with what formula for the probabilities?
- 3. Let y be binomial with sample size n and success probability π and let $\hat{\pi} = y/n$. Find the asymptotic distribution of $\log(\hat{\pi})$. (10 points)
- 4. A binomial experiment tests $H_0: \pi = 0.50$ versus $H_A: \pi > 0.50$ using significance level $\alpha = 0.05$. Only n = 6 observations are available. (15 points)
 - (a) Find the exact P-value when y = 5 successes are observed.
 - (b) Find the actual type I error for the exact binomial test.