
Categorical Data Analysis: HW 4

1. In class, we showed that random variables following normal, Poisson and Bernoulli
distributions are members of the exponential family. What about the binomial?
Since the binomial mean is niπi and we don’t want the ni appearing in the mean,
we need to look at the success proportions. So, let niYi have a binomial(ni, πi)
distribution, where Yi is now the success proportion out of ni Bernoulli trials.

(a) Show that the distribution of Yi belongs to the exponential family and
find the expressions for θi, b(θi), a(ϕi) and c(yi;ϕi). Hint: P (Yi = yi) =

P (niYi = niyi) =
(

ni

niyi

)
πniyi
i (1 − πi)

ni−niyi (since niYi is binomial and all

you have to do is to write this in exponential family form.)

(b) Find the expression for the deviance under this setup.

2. In class, we showed that the likelihood equation for independent Bernoulli(πi)
random components in a GLM with link g(πi) = ηi =

∑p
j=1 βjxij have the form

n∑
i=1

(yi − πi)xij = 0, j = 1, 2, . . . , p.

Find the likelihood equation when fitting a GLM to Poisson random components
with mean µi and link function g(µi) = ηi =

∑p
j=1 βjxij.

3. Refer to the logit model logit(πi) = α + βxi for the success probability of
independent Binomial responses Yi ∼ Bin(ni, πi).

(a) Write down the log-likelihood under this model and find the sufficient
statistics for α and β. Find the expected values of the sufficient statistics
under the model.

(b) Set up the likelihood equations and show that the likelihood equations for
the logit model equate the sufficient statistics for α and β to their expected
values (as in any GLM with canonical link).

(c) Show that the information matrix for (α, β) does not depend on yi. (Hence,
the observed information matrix (the Hessian) equals the expected (Fisher)
information matrix, as in any GLM with canonical link.)

4. Refer to the Horseshoe crab data set analyzed in class.

(a) Using just a crabs carapace width as a predictor for having satellites, fit
a logistic regression model and interpret the parameter associated with
width.

(b) Give the results of an appropriate test that tests if width is a significant
predictor.

(c) Give and interpret a 95% confidence interval for the effect of width.
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(d) Plot the original 0-1 responses versus width and overlay the fitted logistic
response curve.

(e) Predict the probability of having a satellite for a crab of mean width (i.e.,
a crab whose width equals the observed mean width).

(f) Obtain a 95% confidence interval for the probability of having a satellite
for a crab of mean width.

(g) In the plot from part (d), include (pointwise) confidence limits for the
probability of having a satellite.

(h) Check goodness of fit by forming 8 width intervals. I actually found the
R command cut that can do this quit efficiently and generate the table of
the number of successes and failures in each width category:

> width1=cut(width, breaks = c(min(width)-1, 23.25, 24.25, 25.25,

26.25, 27.25, 28.25, 29.25, max(width)+1))

> table(width1,sat)

sat

width1 FALSE TRUE

(20,23.2] 9 5

(23.2,24.2] 10 4

(24.2,25.2] 11 17

(25.2,26.2] 18 21

(26.2,27.2] 7 15

(27.2,28.2] 4 20

(28.2,29.2] 3 15

(29.2,34.5] 0 14

For each width category, find the estimated proportion of having a satellite
at the midpoint of the interval using the fitted model, and then compare
observed and fitted values using the X2 or G2 statistic.

(i) Add spine condition and color to the model (treat both as categorical).
Test if spine condition is really needed in the model.

(j) Refer to the model that includes width and color. Plot the estimated
probabilities of having a satellite versus width, for each color.

(k) Find the confidence interval for the odds of having a satellite for dark
(color=4) versus medium dark(color=3) crabs of the same weight.
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