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SUMMARY

This article suggests a unified framework for testing Proof of Concept and estimating a target dose

for the benefit of a more comprehensive, robust and powerful analysis in phase II or similar clinical

trials. From a pre-specified set of candidate models we choose the ones that best describe the observed

dose-response. To decide which models, if any, significantly pick up a dose effect we construct the

permutation distribution of the minimum P-value over the candidate set. This allows us to find

critical values and multiplicity adjusted P-values that control the familywise error rate of declaring

any spurious effect in the candidate set as significant. Model averaging is then used to estimate a target

dose. Popular single or multiple contrast tests for Proof of Concept, such as the Cochran-Armitage,

Dunnett or Williams tests are only optimal for specific dose-response shapes and do not provide target

dose estimates with confidence limits. A thorough evaluation and comparison of our approach to these

tests reveals that its power is as good or better in detecting a dose-response under various shapes,

with many more additional benefits: It incorporates model uncertainty in Proof of Concept decisions

and target dose estimation, yields confidence intervals for target dose estimates and extends to more

complicated data structures. We illustrate our method with the analysis of a Phase II clinical trial.
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1. Introduction

Dose-response studies are important tools for investigating the existence, nature and extent of a dose

effect in drug development, toxicology and related areas. The following four questions, usually in this

order, are of prime interest [1]: i.) Is there any evidence of a dose effect (i.e., Proof of Concept), ii.)

Which doses exhibit a response different from the control response, iii.) What is the nature of the dose-

response relationship and iv.) What dose should be selected for further studies/marketing (i.e., target

dose estimation)? Multiple comparison procedures in the form of single or multiple contrast tests are

usually applied to address i.) and ii.), whereas statistical modeling additionally answers questions iii.)

and iv.) at the expense of more elaborate assumptions. With the failure rate of current phase III trials

reaching 50%, several of these failed trials are attributed to improper target dose estimation/selection

in phase II and incorrect or incomplete knowledge of the dose-response (FDA meeting on “Good Dose

Response”, Oct. 2004). Furthermore, the FDA reports that 20% of the approved drugs between 1980

and 1989 had the initial dose changed by more than 33%, in most cases lowering it. Clearly, new or

revised concepts are needed to make the decision and dose estimation process more efficient.

For independent and homoscedastic normal data, Bretz, Pinheiro and Branson [2] recently presented

a unified framework to better address PoC and target dose estimation in phase II clinical trials. They

construct optimal contrast tests from each of several candidate models for the underlying dose-response

profile. Subject to establishing PoC with these tests, they pick the model that gives the maximal

contrast for further model-based inference. For categorical responses, the construction of optimal

contrasts tests is not straightforward due to their mean-variance relationship and the selection of

contrast coefficients is often subjective. Further, they only establish the presence (and sometimes

size) of a dose effect, but do not provide confidence intervals for a target dose estimate or allow the

consideration of clinical or regulatory requirements. However, handling all of the questions i.) through

iv.) in a unified framework is a desirable goal and explored in this article.

In Section 2 we start with a candidate set of several plausible dose-response models for a binary

response to incorporate model uncertainty in the PoC decision and subsequent target dose estimation.

Since the target dose heavily depends on the assumed shape, considering several shapes a priori

makes the procedure more robust to model misspecification. To decide which of the candidate models,

if any, significantly pick up the dose-response signal we compare each one to the no-effect model via

a penalized deviance difference statistic. To adjust the significance levels of these multiple tests of
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2 B. KLINGENBERG

PoC (one under each candidate model), we use the step-down approach with the minimum P-value

of Westfall and Young [3] that controls the familywise error rate (FWER) of declaring any spurious

signal in the family of candidate models as significant. In Section 4 we move to target dose estimation

such as the minimum effective dose (MED), using model averaging. Through an extensive simulation

study in Sections 3 and 4, we evaluate and compare our proposed framework to many popular contrast

tests, such as the Cochran-Armitage, Dunnett or Williams procedures. For a variety of possible dose-

response shapes (and known MED’s), we find the probability that our approach establishes PoC, and

we find the median bias, precision and median squared error in the estimation of the MED. The

simulation results show that our approach easily competes with the most powerful contrast tests for

establishing PoC under all shapes considered, and additionally provides an estimate of the MED with

error bounds. In Section 5 we investigate the sensitivity of the analysis to the candidate set, while

Section 6 briefly discusses some extensions.

The need to adjust dose estimation (but not so much PoC) for model uncertainty has been recognized

for some time now, addressed mostly in a Bayesian fashion via Bayesian model averaging (BMA,

[4, 5]). Recently, Morales et al. [6] illustrated BMA for benchmark dose estimation in quantitative risk

assessment. Here, however, we are interested in comparing substantially different, mostly non-nested

models, whose parameters are on different scales and have different interpretations, which complicates

prior specifications and assigning prior odds to candidate models. For further discussion of these and

related topics see [7]. Burnham and Anderson [8] present the issue of selecting among and averaging

across candidate models in a frequentist framework, using AIC values as selection criteria and model

weights. We will adapt these ideas to our context of identifying dose-response models that show a

significant dose effect. However, since we operate in a regulatory environment, our procedures will

adhere to a strong error control, controlling the probability of erroneously declaring PoC with at least

one candidate model when in fact the compound under investigation has no effect. As the PoC decision

is an extremely important one with expensive consequences, this is a crucial feature. Controlling the

risk of further pursuing an ineffective drug or a drug given at the wrong dose seems important both

in terms of protecting humans from unnecessary/uncertain exposure and saving resources for other,

more promising venues. Further, according to the ICH-E4 guideline [9] on dose-response information

to support drug registration, “a well controlled dose-response study [...] can serve as primary evidence

of effectiveness”, in which case error control becomes essential. Our simulations will show that merely

using the candidate model with the smallest AIC (or the one that gives the smallest P-value in a test
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for PoC) leads to an inflation of this error over its nominal level, declaring PoC too often. In fact,

for typical sample sizes used in phase II trials, without multiplicity adjustments this error may more

than double, leading to greater uncertainty about the dose-response profile and the appropriateness

of the selected dose.

2. PoC under model uncertainty

Let Yij be the binary response of subject j at dose di, i = 1 (placebo) , . . . , k, j = 1, . . . , ni. We

assume a parallel group design, with responses Yij independent within and across the k treatment

arms. The extension to other layouts is briefly mentioned in Section 6. Let π(di) = P (Yij = 1)

denote the probability of a successful efficacy (or safety) outcome for subjects at dose di. To illustrate

with some actual data, let Yij be the binary indicator for relief of abdominal pain over a three week

period for patients suffering from Irritable Bowl Syndrome (IBS). A phase II clinical trial was set up to

investigate the efficacy of a compound against IBS in women at k = 5 dose levels d = (0, 1, 4, 12, 24)mg.

Preliminary studies with only two doses indicated a placebo effect of around 30% and a maximal

efficacy of roughly 65%. However, prior to the trial, investigators were uncertain about the shape of

the dose-response profile in between these two extremes. In particular, they could not rule out strongly

concave or convex patterns, or even a downturn at higher doses.

2.1. Defining a candidate set and test statistic

To address these issues of model uncertainty, we start by considering a candidate set M =

{M1, . . . , Mm} of m models for describing the unknown dose-response relationship. These models

can vary with respect to a link function used and/or the nature of the effect of the dose as expressed

in a (linear) predictor. However, with k doses there are k sufficient statistics (the number of success at

each dose level), so the number of parameters appearing in the model must be kept below k to avoid

overfitting or simply reproducing the data. At the same time, the models must be flexible within the

predetermined efficacy range to allow for various plausible dose-response shapes. To illustrate, Table I

presents m = 10 candidate models M1 through M10 (plotted in Figure 1) that use at most 3 parameters

and show a variety of potential dose-response shapes for the efficacy profile of the IBS compound,

with the predetermined placebo effect of 30% and the maximum efficacy at 65%. Most of these models
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4 B. KLINGENBERG

are generalized linear models (GLMs) with flexible fractional polynomial (Royston and Altman [10])

linear predictor form, successfully employed in similar applications of estimating a benchmark dose in

quantitative risk assessment (e.g., [11, 12]). The candidate set covers a broad dose-response space and

should include the scenarios anticipated by the clinical team developing the drug. For plotting the

models, initial parameter estimates are computed from educated guesses of the placebo and maximum

possible effect, for instance from pilot or previous studies. For three-parameter models, it is necessary

to include additional information, e.g. at which dose the maximum efficacy is expected. An R function,

available at the author’s website www.williams.edu/∼bklingen automates this procedure and plots

many flexible candidate models for a set of given specifications. (The Appendix shows the R code used

to generate Figure 1). This function can be used as an interactive tool by the clinical team to add,

modify or delete models from the candidate set until a reasonable choice covering plausible shapes

is found. It should be noted that initial parameter estimates are only needed for illustration of the

candidate dose-response curves, but not for the following methodology to work.

After defining a candidate set, we are interested in identifying those models that pick up a potential

dose-response signal from the data. To this end, we compare each model Ms ∈ M to the model

M0 : π(di) = β0 of no dose effect via a signed and penalized likelihood ratio statistic

Ts = (−1)I(π̂s(dmax)≤π̂s(d1)) {−2 [log L(y, n; M0)− log L(y, n; Ms)]} − 2dfs.

Here, I(.) is the indicator function and L(y, n; Ms) is the maximized binomial likelihood corresponding

to model Ms, with y = (y1+, . . . , yk+) and n = (n1, . . . , nk) the observed number of successes and

sample sizes at the k dose levels, respectively. The part of Ts in curly brackets is the deviance difference

between the two models and equals 2
∑

yi+ log[π̂s(di)/π̂0(di)] + 2
∑

(ni − yi+) log[(1 − π̂s(di))/(1 −
π̂0(di))], where π̂s(d) is the ML estimate of π(d) under model Ms and π̂0(d) =

∑
yi/

∑
ni. Naturally,

we are only interested in a positive, i.e., beneficial dose effect (without loss of generality, we assume Yij

is coded such that an increase in π(d) with dose is desirable). Although straightforward for monotone

profiles, in general we define a dose effect as positive for model Ms if π̂s(dmax) > π̂s(d1), where

dmax = argmaxd|π̂s(d)− π̂s(d1)| is the dose at which the maximum absolute effect relative to placebo

occurs. This rules out shapes (e.g., certain quadratic ones) where a drop relative to placebo is too

drastic, but still allows some shapes (e.g., certain J-shapes) with an initially negative effect. We use this

signed version of the difference in deviance to filter out (and move to the lower tail) those models with

a negative estimated dose effect, so that we can reject the null hypothesis and conclude a beneficial
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effect for large values of Ts. In addition, we penalize fitting more complex models by subtracting two

times the difference in the number of parameters between Ms and M0. Note that the unsigned version

of Ts is identical to the difference between the AIC values for the two models, a statistic discussed for

model selection by Lindsey and Jones [13] and strongly favored by [8]. Next, we turn to establishing

the significance of Ts under simultaneous inference with all candidate models.

2.2. A permutation test for PoC

We are interested in models that are “best” suited for picking up the dose-response signal, i.e. that

distance themselves as much as possible from M0 on the likelihood scale, as measured by Ts. Let ps

be the P-value corresponding to Ts. We seek out those models that have the smallest P-values in the

candidate set M. A dose-response effect is established (i.e., PoC) if the minimum P-value is small

enough, that is, if mins ps ≤ c, where c is a suitable chosen critical value (i.e., an adjusted significance

level) such that the type I error rate of erroneously declaring PoC under simultaneous inference is

controlled at the desired level α. We prefer working on the P-value scale and not directly on the scale

of the test statistics Ts (e.g., by using maxs Ts), as these are not standardized. In fact, the asymptotic

distribution of Ts is proportional to a Chi-square with dfs degrees of freedom, see below.

Under the null hypothesis M0 of no dose effect, doses are interchangeable. By finding (T1, . . . , Tm)

for a random sample of the
[∑k

i=1 ni

]
!/

∏k
i=1 ni! permutations or assignments of subjects to different

dose levels, we obtain the exact (to any desired degree of accuracy) P-values for the observed test

statistics T obs
s : pobs

s = 1
B

∑B
b=1 I(T

(b)
s ≥ T obs

s ), where T
(b)
s is the value of Ts under the b-th permutation,

b = 1, . . . , B and I(.) is the indicator function. From the permutation distribution of (T1, . . . , Tm),

we also get the permutation distribution of the minimum P-value, mins ps, by finding the minimum

P-value mins p
(b)
s for each permutation b, where p

(b)
s = 1

B

∑B
l=1 I(T

(l)
s ≥ T

(b)
s ) is the P-value for T

(b)
s

under the b-th permutation. Then, by choosing c equal to the α percentile of the distribution of

mins ps, the overall type I error rate of our PoC decision criterion to reject if the smallest observed

P-value is less than c is controlled at level α.

With a random sample of B = 50, 000 permutations of the IBS data, Table II displays the observed

Ts and their corresponding permutation P-values pobs
s , under the 10 candidate models of Table I.

Viewed individually, PoC can be established with all candidate models except M7 at a significance level

of α = 2.5%, say. From the permutation distribution of the minimum P-value, we obtain c = 0.0083
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6 B. KLINGENBERG

when α = 2.5%. (A plot of the histogram of mins ps is available via the R code shown in the Appendix).

Since the minimum observed P-value pobs
5 = 0.00001 (only one permutation resulted in a larger T5) is

smaller than c, PoC can be established at the 2.5% significance level, which is not surprising given the

sample proportions plotted in Figure 3. Note that finding the asymptotic distribution for mins ps is not

straightforward, as it is based on the correlated (to various degrees) statistics {Ts}. The Bonferroni

adjusted critical value cBonf = α/10 = 0.0025 leads to more conservative inference and hence less

power to detect PoC. If we assume independence among test statistics Ts, the asymptotic distribution

of mins ps is Beta(1, m), with 2.5 percentile equal to cBeta = 0.0025 when m = 10, again a conservative

estimate of the critical value.

2.3. Multiplicity adjusted P-values for testing PoC

Rather than finding the appropriate critical value, we can adjust the observed P-values to reflect

multiplicity when testing PoC with several models simultaneously. Following the definition in Westfall

and Young ([3], chpt. 2), the multiplicity adjusted P-value for testing PoC with model Ms is the

proportion of permutations for which the minimum P-value over all models is smaller than the one

observed for model Ms. In their more powerful step-down procedure, the permutation distribution

of mins ps is used to find the adjusted P-value for the model with the smallest P-value, e.g. M5 for

the IBS data. Subsequent steps delete all permutations for the model with the smallest P-value (e.g.,

all T
(b)
5 , b = 1, . . . , B are deleted) and find the permutation distribution of the minimum P-value

over the remaining models. The multiplicity adjusted P-value corresponding to the second smallest

observed P-value (pobs
9 in our example) is then the proportion of permutations for which the minimum

P-value over the m − 1 remaining models is smaller than the observed one. Using these step-down

adjustments based on the minimum P-value, Table II displays all adjusted P-values for the IBS data

and shows that PoC can be established (e.g., at a 2.5% FWER) with almost all of the candidate models,

even when adjusting for simultaneous inference. The use of these adjusted P-values guarantees that

the familywise type I error rate for one or more incorrect PoC decisions when the drug is actually

ineffective is controlled at the desired level (e.g., at 2.5%). This control is in the strong sense, i.e., no

matter which or how many of the m PoC null hypothesis are actually true. As mentioned before, by

taking advantage of the correlation among the Ts statistics, the adjusted P-values are considerably

smaller than ones based on the universally applicable Bonferroni or the more powerful Bonferroni-
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Holm ([14]) correction, which would multiply the smallest permutation (or asymptotic, see below)

P-value by 10, the second smallest one by 9, etc. Finally, based on the Chi-square approximation

for the difference in deviance, unadjusted asymptotic P-values displayed in Table II are given by

1/2 + 1/2Pr{χ2
dfs

≤ −(Ts + 2dfs)} if Ts + 2dfs ≤ 0 (i.e., under an estimated negative dose effect) and

by 1/2Pr{χ2
dfs

≥ Ts + 2dfs} if Ts + 2dfs > 0 (i.e., under an estimated positive dose effect), where

χ2
q is a Chi-square random variable with q degrees of freedom. For large sample sizes in each arm,

as in our example, these asymptotic P-values are virtually identical to the unadjusted permutation

P-values pobs
s . A second R function available at the author’s website provides all output displayed in

Table II for a given candidate and data set, and the Table can be reproduced with the R-code in the

Appendix.

We would like to stress that the above approach controls the familywise error rate in this multiple

testing scenario and is in contrast to the common habit of “model fishing”, whereby several models

are fitted (often a posteriori, after looking at the data) to account for the uncertainty on which

model the PoC decision should be based. Often, one model is selected based on the most significant

difference in deviance, largest Pearson’s goodness of fit statistic or minimum AIC, without any regard

to multiplicity issues. It is clear that these practices ignore uncertainty in the decision process and

inflate actual type I error rates of hypotheses tests (such as PoC, see our simulation results in Section 3)

or fail to meet nominal coverage rates for confidence intervals (such as ones for target dose estimates)

as they are carried out conditional on the selected model ([7, 15]). In this sense and in a regulatory

environment, the candidate set M must be specified a priori, before the data gathering stage, in a

study protocol, using information up to that point. To protect against model misspecification, models

that yield different shapes can be included. Section 5 includes further discussion on the sensitivity of

results to the choice of the candidate set.

3. A simulation study with comparisons to powerful trend and contrast tests

In order to evaluate type I error rates and the power of establishing PoC with the suggested framework,

and to compare its performance against popular contrast tests, we ran several simulation studies. We

used the same (unequally spaced) dose levels as in the IBS study but now with balanced sample sizes of

ni = 25 or 50 subjects per arm (any larger sample size gave similar results). Table III shows type I error
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8 B. KLINGENBERG

rates using 5000 simulations from the no-effect model M0 : π(di) = 0.3, when the goal is to control the

FWER at α = 5% or 2.5%, respectively, and with the candidate set consisting of the models in Table

I. As expected with our exact procedure, the actual type I error rate of erroneously declaring PoC is

well controlled at the prescribed level. On the contrary, type I error rates of nominal 5% or 2.5% PoC

tests that ignore the multiplicity in selecting a model for the PoC decision are inflated to about 11%

and 6%, respectively, leading to many more false positive PoC decisions than desired. We demonstrate

this in our simulations in two ways, by evaluating the procedure that simply fits all candidate models

(which is often done implicitly in practice, when no candidate set is specified) and then bases the

decision of PoC on the model that yields the smallest asymptotic P-value. Alternatively, we evaluate

the procedure where the PoC decision is based on the candidate model with the minimum AIC. In

both cases, we use as test statistic the difference in deviance (i.e., likelihood ratio test) between the

no-effect model M0 and the selected model, given the model shows a positive dose effect (otherwise,

we declare no PoC). Both procedures lead to very similar inflations of type I error rates (because the

model with the smallest P-value for the difference of deviance is also often the one with the minimum

AIC) and hence Table III shows results only for the latter one. This inflation is in line with current

results for normal data obtained by Hu and Dong [15], who also explore the issue of drawing inference

after dose-response model selection.

To evaluate power, we assumed a placebo effect of 30% and a maximal efficacy of 65%, consistent

with the prior information in the IBS study. For models with a downturn, we assumed that the maximal

efficacy occurs at doses of 8mg and 14mg, respectively. Table III shows the power of establishing PoC

under selected dose response shapes from Table I (i.e., when the true dose response shape is a member

of the candidate set), based on 1000 simulations from each. As mentioned in the introduction, PoC is

often established via trend tests or multiple comparison procedures. We compare type I error rates and

power for our procedure to some of the most popular and powerful ones, such as the Cochran-Armitage

(CA) trend test or Dunnett’s multiple comparison procedure (see, e.g. [16]). We also include multiple

contrast tests that take the maximum over a larger set of contrasts to cover a broader dose-response

space. Well known examples are Williams’ trend test [17, 18] which is particularly powerful to detect

concave shapes and Hirotsu’s [19] step contrasts (see also [20] and, for a related test, [21]) which are

very sensitive for single-jump shapes. The maximum of Helmert, linear, and reverse Helmert contrast

coefficients are designed for linear and quadratic shapes. Another powerful test is based on Marcus’ [22]

multiple contrast coefficients which include the Williams’ contrasts, supplemented by their reflections
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and some additional contrast vectors. Table IV shows contrast coefficients for all these tests for a

balanced 5 dose layout. Table V compares the performance of our procedure and the contrast tests

under model misspecification, i.e., when none of the models in the candidate set corresponds to the

true dose response profile from which the data were generated. Some of these shapes (plotted in Figure

2) can be approximated by models in the candidate set, while others severely deviate and represent

extreme cases.

The CA test is one of the most powerful trend tests for monotone dose response shapes [23]. The

power of our approach is close to the power of the CA test for all monotone dose response shapes

included in the simulation (M1, M3, M5, M7 and all but the first three shapes in Figure 2), sometimes

even outperforming it (e.g., under models M5 and the Emax and sigmoid Emax model). This is

no surprise, as the CA test is closely related to a score test (it equals the score test under a logit

model) and score and likelihood ratio tests are asymptotically equivalent for the monotone shapes.

As expected, for non-monotone shapes, the CA test performs poorly. Interestingly, Dunnett’s test

performs inferiorly for all monotone shapes, while the other contrast tests show power similar to our

approach for some but not all shapes. Overall, across Tables III and V, our approach consistently

shows high power regardless of the underlying dose-response shape and easily competes with every

contrast test considered. Summing up, almost nothing is lost in terms of power when using our robust

procedure instead of the optimal contrasts test that would correspond to the (unknown) shape.

4. Dose estimation

Once we decide on a best approximating model (or models) for the true dose-response shape, the

focus shifts towards target dose estimation. Here, we consider estimating the minimum effective dose

(MED), defined as the smallest dose that is both clinically relevant and statistically significant [1].

Following results in [2], we estimate the MED for model Ms by

M̂EDs = argmind∈(d1,dk]{π̂s(d) > π̂s(d1) + ∆, π̂L
s (d) > π̂s(d1)},

where ∆ is the clinically relevant effect and π̂L
s (d) is the lower limit of a 100(1−γ/2) confidence interval

for π(d). Obtaining the MED estimate is straightforward (i.e., amounts to solving a polynomial) for

models such as M1 to M4. For others, a basic line search starting at the lowest dose yields the MED.

We say that the MED does not exist if it is outside the observed dose range. Other target doses, such
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10 B. KLINGENBERG

as ones with clinical relevance specified in absolute terms and not relative to the placebo effect can

be considered accordingly.

For the IBS data, model M5 has the smallest multiplicity adjusted P-value and is chosen for target

dose estimation. With a clinical relevant effect of ∆ = 15% specified in the planning stage of the

trial between the sponsor and the regulatory agency (for guidelines regarding IBS, see [25]), γ = 0.05

and maximum likelihood estimates (standard errors in parentheses) equal to β̂0 = 0.63 (0.13), β̂1 =

−1.10 (0.26), M̂ED = 1.3mg. The left panel in Figure 3 illustrates the construction of the MED

under this model. Various asymptotic formulae (e.g., [24]) exist for obtaining the standard error

of a target dose estimate, however, they do not take model uncertainty into account and may not

work well if the distribution of the target dose estimate is very skewed. A 95% bootstrap percentile

confidence interval is straightforward to construct, either by fitting model M5 repeatedly to bootstrap

samples taken within each dose group (non-parametric version) or via repeatedly simulating from

the fitted model (parametric version). For the IBS data, these intervals are similar at [0.6mg, 6.9mg]

and [0.7mg, 6.4mg], respectively. Both intervals are constructed conditional on establishing PoC, by

discarding simulated data sets for which the MED did not exist, either because clinical relevance or

statistical significance could not be established. However, they do not represent uncertainty due to

model selection by pretending model M5 is the only one under consideration.

4.1. Combining dose estimates from models

An alternative estimate of the true MED can be obtained as a weighted average of the estimated

MEDs (so they exist) from each model. By letting

ŵMED =
∑

s:M̂EDs≤dk

wsM̂EDs

/ ∑

s:M̂EDs≤dk

ws,

where M̂EDs is the estimated MED for model Ms and ws are suitable weights, model uncertainty is

incorporated into the target dose estimate. Note that for two models Ms and Ms′ with equal number of

parameters, exp( 1
2
[Ts−Ts′ ]) is the likelihood ratio of the two models. For instance, the observed data

are exp( 1
2
[16.35− 14.25]) = 2.9 times more likely under M5 than under M4 and 1.4 times more likely

than under M9. For the latter comparison, the likelihood ratio is penalized by exp(dfs′ − dfs) for the

excess parameters in one model over the other. These considerations motivate weights ws = exp(Ts/2)

for constructing ŵMED, which have also been suggested by [26] in a similar context. In this way, the

ratio of weights ws and ws′ attached to the MED’s from models Ms and Ms′ reflects their relative
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(penalized) likelihood distance. For a slightly different approach of finding weights, see [27].

Relative weights for the IBS data are displayed in Table II, which yield ŵMED = 1.7mg, slightly

larger to the estimate solely based on M5 as it incorporates information from other models with

different slopes and curvature. The right panel in Figure 3 illustrates this point by showing the fit of

models that received the largest weights. We obtain a 95% bootstrap confidence interval by repeating

the entire procedure that led to the estimate of the wMED over many resamples. In this way, all sources

of uncertainty associated with testing PoC and estimation of the wMED are incorporated. With 5,000

bootstrap resamples and discarding those for which PoC could not be established (which was 1%

of bootstrap samples with the IBS data) the interval is conditional on establishing PoC and equals

[0.4mg, 7.9mg]. This interval is somewhat wider than the one based on M5 alone as it incorporates

model uncertainty in the MED estimate.

4.2. Performance of MED estimators

To evaluate bias and variability of M̂ED and ŵMED, we included the dose estimation step in the

simulation study from the previous section. For each simulated data set for which PoC could be

established, we computed M̂ED from the fitted model with the smallest adjusted P-value (using

∆ = 0.15 and γ = 0.05) or combined the MED’s from all models to get ŵMED. Boxplots in Figure 4

for selected dose response shapes show the results graphically. The true MED for a particular model

is given by the gray vertical line, and the median of M̂ED and ŵMED over 1000 simulations from

that model by a full circle. For most shapes the median bias in both estimates gets relatively small

with n = 50 observations per dose group. With regards to the precision of both estimators, it is not

surprising that the Interquartile Range (IQR) is smallest for shapes that have steep slopes at the true

MED, such as M5, M8, M10 or the Emax model. However, large variability remains in both estimators

for moderately monotone increasing shapes (such as M1, M3 or the sigmoid Emax model), even under

per-arm sample sizes of ni = 100. We see that for these shapes target dose estimation is considerably

harder than merely establishing PoC, and sample sizes that are sufficient for establishing PoC may

not be adequate for precise target dose estimation.

As the distribution of the estimates can be very skewed, Table VI displays robust summary statistics

to evaluate the performance of M̂ED and ŵMED when ni = 100 (i.e., when establishing PoC is

virtually certain), such as the median bias, the IQR and the square root of the median squared error
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(
√

MSE). Although ŵMED is slightly more biased, its
√

MSE is comparable to the one of M̂ED for

the best fitting model. Table VI also presents the percentage that the minimum adjusted P-value

occurs for the candidate model from which the data were generated (if this shape is in the candidate

set) and the average relative weight associated with that model. For example, the first line in the

last two columns reads as follows: For 35% of the 1000 simulations under shape M1, the minimum

adjusted P-value actually occurred for candidate model M1. Other than M1, the highest percentage

(23%) occurred under model M6. (M1 and M6 propose a similar shape, hence this split). The average

relative weight assigned to the estimated MED from model M1 equals 20%, while the next largest

relative weight, 19%, was assigned to the MED estimate from model M6. Models that are well identified

and accumulate the largest weights are again the ones with steep slope at the MED and a distinct

curvature. For instance, M8 is correctly identified 86% of the times, and its MED estimate received

an average weight of 69%. For others, such as M3, competing models (in this case M2 and M4) result

in nearly identical fits, and hence the wMED weights are distributed evenly across these models.

5. Sensitivity of results to models included in candidate set

An important aspect of the proposed methodology is the selection of models to be included in the

candidate set. For the IBS data, the clinical team had little prior knowledge of the dose-response based

on biological considerations and the goal was simply to cover a variety of plausible shapes. Adding

candidate models that are similar to ones already in the set M will have almost no effect on the

critical value and hence on the power of establishing PoC. For example, suppose we add 8 GLMs with

linear predictor form equal to M1 −M5 and M8 −M10 but using a complementary log-log link and

another 5 logit models with fractional polynomial powers not included in Table I, such as β0 +β1d
−3/2

or β0 + β1 log(d) + β3d
−1/2, for a new total of 23 candidate models. These 13 new models add little

to the shape space spanned by the original candidate set. The critical value c = 0.0073 for this much

larger candidate set is just slightly lower than c = 0.0082 from the original analysis. (Note that

cBonf = 0.025/23 = 0.0011 or cBeta = 0.0011 are considerably smaller.) Hence, the cost for multiplicity

adjustments due to adding these 13 models are almost negligible, due to their high correlation with

models already in M. In particular, the model β0 +β1d
−3/2 with the logit link fits slightly better than

M5 with the logit or asymmetric cloglog link (although adjusted P-values are virtually identical for
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the three). The MEDs 0.8mg, 1.3mg, and 1.5mg under these three models receive the largest relative

weights of 16%, 14% and 11% in the computation of the wMED, which changes slightly from 1.5mg

to 1.4mg. The corresponding bootstrap confidence interval that takes into consideration all sources

of uncertainty is almost unchanged at [0.5mg, 7.2mg]. On the other hand, leaving out models that

are not well represented by those already in M has an impact on the power of establishing PoC. For

example, the critical value with the initial candidate set that does not include the shapes M8 and M10

that allow for a considerable downturn increases to c = 0.0099, resulting in a more powerful procedure

for some alternative shapes except of course those that are well described by these two models.

Many popular dose-response models are non-linear in the parameters of the linear predictor, such as

the compartment (M11), Emax (M12), sigmoid Emax (M13), 4-parameter logistic (M14) and Weibull

(M15) models, see Table VII. While the first two shapes can be approximated by fractional polynomials,

the latter three allow for modeling a monotone but flexible S-shaped dose-response curve over the

efficacy range of the drug, at the cost of an increase in the number of parameters. In fact, with only 5

dose levels, these models might not be appropriate and parameter estimation can be poor and instable.

As a consequence, these models are often difficult to fit even for the observed data, but especially to

permuted data where the natural structure is broken. For the IBS data, standard errors for the β3

parameter that controls the slope of the S-shaped curves are huge in all three 4-parameter models

(s.e.(β̂3)/β̂3 > 6), and ML-estimates are unstable and sensitive to starting values, indicating that

some parameters are not well identified for the given data and spacing of doses. Moreover, all four

models did not converge for a significant percentage of the randomly generated 50,000 permutations,

mostly because automatic and constrained maximization (with constraints β2, β3 > 0) can be tricky

on the permuted data sets. Table VIII gives details of the permutation approach when the original

candidate set of Table I is amended with M11−M13. If, for a given permutation, a model Ms does not

converge, we set Ts = −∞ as PoC cannot be established with that model. We observe that although

key characteristics such as the critical value or the estimate of the wMED do not change, there might

be considerable bias in the adjusted P-values based on the permutation approach. For other data

sets, we observed an even higher percentage of non-converging fits, or fits for which a positive definite

estimate of the variance-covariance matrix of the estimated parameters could not be obtained. In such

situations, we recommend not to perform the permutation analysis but instead adjust the asymptotic

P-values by some suitable method that does not require permutations. For instance, the column labeled

“B-H P-value” in Table VIII applies Bonferroni-Holm multiplicity adjustments to the asymptotic P-
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values. However, in our simulations to construct Tables III and V, we did note some loss of power in

the PoC test (e.g., an average of 10% over the models in Table III at n = 50) when using the B-H

multiplicity adjusted P-values over the ones based on the permutation approach. This is because the

step-down multiplicity adjustment of the minimum P-value incorporates the correlation information

in (T1, . . . , Tm), leading to a larger critical value c.

6. Conclusions and Extensions

In this article we presented a framework that combines formal hypothesis testing for PoC under a

strong error control with flexible modeling of the dose response relationship. The simulation studies

showed that for moderate sample sizes (e.g., 25 and more subjects per arm) the suggested framework

is as powerful (even under candidate model misspecification) as methods based on popular trend or

contrast tests that are only powerful for a particular subsets of dose-response shapes. By design, our

framework allows to power the trial for shapes that the clinical team thinks are reasonable, instead of

taking an “off the shelf” method such as the CA-test or Dunnett’s procedure that are only powerful

for a much narrower alternative. Unequally spaced doses and/or unbalanced sample sizes are naturally

handled, and adjustments due to covariates such as baseline measures or subject-specific characteristics

can be implemented at the modeling stage. Contrary to contrast tests, we can obtain and assess the

variability in the target dose estimate, which, somehow surprisingly, is shown to be quite large under

some monotone shapes, even for large sample sizes.

One restriction of the permutation approach is that it is likely to fail when non-linear (on the link

scale) candidate models are desired. For such cases, an alternative is to adjust the asymptotic P-values

of a statistic such as Ts with a suitable procedure (such as Bonferroni-Holm). However, this can lead

to some loss of power in the PoC test. Convergence of non-linear models can be checked a priori via

a simulation study similar to the one in Section 3.

The generality of our approach makes extension to continuous or count and multivariate or repeated

responses (such as in cross-over studies) possible when the fitting process is not too complex. If non-

likelihood based methods are used in fitting e.g. repeated categorical responses such as in a GEE

approach, an attractive alternative to the signed penalized deviance difference statistic Ts could be a

penalized generalized score statistic [28]. Research is currently under way to implement our methods
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for establishing PoC and target dose estimation with multivariate binary responses, such as occur with

two primary endpoints or when considering an efficacy and safety endpoint jointly. In the bivariate

case, one can consider candidate models that describe different shapes for the two margins and a

model for their association (e.g., Sect. 6.5 of [29]). For instance, in the IBS study mentioned in Section

2 one often differentiates between two primary endpoints, relief of abdominal pain and relief of overall

symptoms excluding abdominal pain. The candidate set then specifies combinations of the models in

Table I for these two margins and a model for their association. Similar to Ts and for a given definition

of a positive dose effect, the permutation distribution of

T (Mr, Ms) = (−1)I(neg. dose effect) {−2 [l(M0, M0)− l(Mr, Ms)]} − penalty,

where l(Mr, Ms) is the maximized multinomial log-likelihood under marginal models Mr and Ms and

a particular model for the association can be used to test for PoC, incorporating model uncertainty but

still controlling the FWER. Target dose estimation can then proceed from either the fitted margins

(which is appropriate if one margin describes safety, which needs to be controlled regardless of efficacy),

the model for the joint success probability or some other utility function. Other extensions of the

methodology are towards semi-parametric models that could yet allow more flexibility in modeling

the dose-response, at the cost of interpretability in discussions with the clinical team that are crucial

in our first step of building the candidate set. Putting aside a possible power advantage or the

difficulty of selecting a smoothing parameter with a small number of doses (knots), a fully parametric

approach allows for straightforward simulation to find the necessary sample size for a given power

under various scenarios of an assumed placebo or maximum dose effect, as well as under candidate

model misspecification (for normal responses, see Pinheiro et al. [30]). Finally, the simulation study in

Section 3 also serves to illustrate how the methodology can be used in the design stage to explore the

power of establishing PoC under various sample size allocations, sets of candidate models or number

and spacing of doses.

APPENDIX

The following code and additional information on the R implementation of the proposed method

are available at www.williams.edu/∼bklingen/PoC/Rcode. Simply copy and paste the R code to

reproduce all results in this paper or edit the code to create new candidate models.
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Defining and plotting candidate models:

source("http://lanfiles.williams.edu/∼bklingen/PoC/plotModels.R")
source("http://lanfiles.williams.edu/∼bklingen/PoC/binomial1.R") #allows for identity link

source("http://lanfiles.williams.edu/∼bklingen/PoC/makelink.R") #allows for loglog-link

dose <- c(0,1,4,12,24)

M1 <- list(family=binomial())

M2 <- list(model=pow(dose,0.5), family=binomial())

M3 <- list(model=pow(dose,0), family=binomial())

M4 <- list(model=pow(dose,-0.5), family=binomial())

M5 <- list(model=pow(dose,-1), family=binomial())

M6 <- list(family=binomial(link=log))

M7 <- list(model=expo(dose,2,scale=max(dose)), family=binomial(link="identity"))

M8 <- list(model=pow(dose,c(1,2),dmax=14), family=binomial())

M9 <- list(model=pow(dose,c(0,-1),dmax=8), family=binomial())

M10 <- list(model=pow(dose,c(0,1),dmax=8), family=binomial())

models <- list(M1,M2,M3,M4,M5,M6,M7,M8,M9,M10)

plotModels(dose, models, low=0.3, high=0.65) #plots candidate dose-resp. models

Inference with candidate models (adj. P-values, MED, . . .):

source("http://lanfiles.williams.edu/∼bklingen/PoC/perm minP GLM.R")

source("http://lanfiles.williams.edu/∼bklingen/PoC/nonlin dr.R") # only needed if fitting

non-linear models

y <- c(38,52,67,59,58) # successes

n <- c(100,102,98,99,94) # sample sizes

resp <- cbind(y,n-y)

dr <- permT(dose,resp,models,perms=5000,trace=500,clinRel=0.15,alpha=0.025)

summary(dr)

hist(dr) # plots the histogram of the minimum P-value

plot(dr) # plots the fitted model with the smallest adj. P-value, see Figure 4

plot(dr,which.models=c("M5","M9","M10","M4") # similar to Figure 4
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Table I. Candidate dose-response models for the efficacy of a compound against IBS.

M Link Predictor # parms
M1: logit β0 + β1d 2
M2: logit β0 + β1

√
d 2

M3: logit β0 + β1 log(d + 1) 2
M4: logit β0 + β1

√
d + 1 2

M5: logit β0 + β1/(d + 1) 2
M6: log β0 + β1d 2
M7: identity β0 + β1 exp(exp(d/max(d))) 2
M8: logit β0 + β1d + β2d

2 3
M9: logit β0 + β1 log(d + 1) + β2/(d + 1) 3
M10: logit β0 + β1 log(d + 1) + β2d 3
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Table II. AIC, Ts and corresponding asymptotic, raw and step-down multiplicity adjusted permutation
P-values for the PoC test with each candidate model. Adjusted P-values adjust the raw P-values for
the multiple tests of PoC, one for each of the 10 candidate models. Further, MED estimates and their

associated relative weight in the computation of the wMED.

asympt. raw adj. M̂ED ws/
∑

ws

M AIC Ts P-value P-value P-value (mg) (%)
M1: 45.4 3.68 0.0086 0.0088 0.0118 NA 0
M2: 40.3 8.76 0.0005 0.0005 0.0011 12.3 1
M3: 38.5 10.53 0.0002 0.0002 0.0006 8.0 2
M4: 34.8 14.25 <0.0001 0.0001 0.0003 2.8 14
M5: 32.7 16.35 <0.0001 <0.0001 0.0001 1.3 40
M6: 45.8 3.25 0.0110 0.0113 0.0145 NA 0
M7: 48.1 0.90 0.0442 0.0454 0.0454 NA 0
M8: 42.0 7.01 0.0020 0.0021 0.0041 6.8 0
M9: 33.4 15.63 <0.0001 <0.0001 0.0001 0.7 28
M10: 34.9 14.20 0.0001 0.0001 0.0002 1.7 14

critic. value c = 0.0083 ŵMED = 1.7mg
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Table III. Power (in %) of establishing PoC at a 2.5% FWER under selected dose-response profiles
from Figure 1 for our approach based on the adjusted minimum P-value (min P ) vs. the minimum
AIC approach and popular contrast tests. Based on 1000 simulations from each profile (simulation
margin of error at most 3%), using at most B = 3000 permutations for each. To evaluate the type I
error rate when controlling the FWER at 5% (third column) or 2.5% (fourth column), we used 5000
simulations from M0 (simulation margin of error at most 0.8%), and at most B = 5000 permutations

for each. The last two columns refer to median and average power over these selected models.

Dose-response profiles Med. Avg.
n Method M∗

0 M∗∗
0 M1 M3 M5 M7 M8 M10 Power Power

25 min AIC∗∗∗ 12.5 7.0 87 90 88 83 80 71 85 83
min P 5.0 2.6 77 76 77 77 64 64 77 73

CA 5.4 3.0 84 79 59 82 35 10 69 58
Dunnett 5.5 2.6 55 65 73 54 57 66 61 62
Williams 5.0 2.5 67 76 82 65 52 56 66 66
Hirotsu 5.2 2.6 77 76 76 77 59 53 76 70
Helmert 4.8 2.6 77 75 77 80 46 47 76 67
Marcus 5.1 2.7 78 78 78 79 58 52 78 71

50 min AIC∗∗∗ 11.1 6.1 98 99 99 99 96 97 99 98
min P 4.8 2.3 97 98 97 99 89 92 97 95

CA 5.1 2.7 98 98 86 99 57 12 92 75
Dunnett 5.4 2.9 90 90 96 90 86 90 90 90
Williams 5.3 2.5 93 97 98 94 79 87 94 91
Hirotsu 5.2 2.7 97 98 97 99 87 85 97 94
Helmert 5.5 2.6 97 99 96 99 77 78 97 91
Marcus 5.0 2.7 97 98 96 99 87 84 97 94

∗Controlling FWER at 5% (i.e., α = 0.05)
∗∗Controlling FWER at 2.5% (i.e., α = 0.025)
∗∗∗The candidate model with the minimum AIC is selected without regard to multiplicity adjustments

Copyright c© 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 00:0–0
Prepared using simauth.cls



22 B. KLINGENBERG

Table IV. Contrast vectors c(l) for maximum contrast tests with 5 dose levels and test statistic

T = maxl T (l), where T (l) =
∑

i c
(l)
i pi

/√
p0(1− p0)

∑
i[c

(l)
i ]2/ni and p0 the pooled sample proportion.

The multiple contrast vectors called “Helmert” are actually the linear, Helmert and reverse Helmert
contrasts.

Contrast Contrast Vectors
CA: (0, 1, 4, 12, 24)

Dunnett: (−1, 1, 0, 0, 0), (−1, 0, 1, 0, 0), (−1, 0, 0, 1, 0), (−1, 0, 0, 0, 1)

Williams: (−1, 0, 0, 0, 1), (−1, 0, 0, 1/2, 1/2), (−1, 0, 1/3, 1/3, 1/3), (−1, 1/4, 1/4, 1/4, 1/4)

Hirotsu: (−1/4,−1/4,−1/4,−1/4, 1), (−1/3,−1/3,−1/3, 1/2, 1/2),
(−1/2,−1/2, 1/3, 1/3, 1/3), (−1, 1/4, 1/4, 1/4, 1/4)

Helmert: (−4,−2, 0, 2, 4), (−1,−1,−1,−1, 4), (−4, 1, 1, 1, 1)

Marcus: (−1, 0, 0, 0, 1), (−1, 0, 0, 1/2, 1/2), (−1, 0, 1/3, 1/3, 1/3), (−1, 1/4, 1/4, 1/4, 1/4),
(−1/4,−1/4,−1/4,−1/4, 1), (−1/3,−1/3,−1/3, 1/2, 1/2), (−1/3,−1/3,−1/3, 0, 1),
(−1/2,−1/2, 1/3, 1/3, 1/3), (−1/2,−1/2, 0, 1/2, 1/2), (−1/2,−1/2, 0, 0, 1)
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Table V. Power (in %) of establishing PoC under dose-response model misspecification, controlling the
FWER at 2.5% (except under the row labeled “min AIC”).

Dose-response profiles
Peak Step Sig. Med. Avg.

n Method 1 2 Plateau 1 2 3 Emax Logist. Emax Power Power
25 min AIC∗ 74 70 95 85 96 96 88 93 95 93 88

min P 55 50 87 81 92 90 76 84 92 84 79
CA 10 18 1 84 95 77 58 89 82 77 57

Dunnett 54 62 75 55 70 81 73 64 72 70 67
Williams 22 50 44 65 81 84 81 75 81 75 65
Hirotsu 37 57 60 84 93 95 73 85 89 84 75
Helmert 13 41 23 86 89 88 77 84 85 84 65
Marcus 36 56 58 83 93 94 77 86 89 83 75

50 min AIC∗ 97 91 99 97 100 100 99 100 100 99 98
min P 81 87 99 99 99 100 98 99 99 99 96

CA 16 31 1 99 100 97 86 99 97 97 70
Dunnett 90 87 95 90 94 97 95 91 95 94 92
Williams 43 82 75 92 97 98 98 96 98 96 86
Hirotsu 65 89 91 99 100 100 97 99 100 99 93
Helmert 26 72 48 99 99 99 98 99 99 99 82
Marcus 64 88 90 99 100 100 97 99 100 99 93

∗ Does not control FWER at α = 2.5%
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Table VI. Median bias, IQR and square root of the median squared error (
√

MSE) for M̂ED and

ŵMED of the model with the smallest adjusted P-value under selected shapes of Tables I and VIII,
when ni = 100. The last two columns refer to the percentage of correctly identifying the model in

the candidate set and its average weight in estimating ŵMED. For an explanation of these values see
Section 4.2.

Sim. True M̂ED (in mg) ŵMED (in mg) maxTs Avg. ws

Model MED bias IQR
√

MSE bias IQR
√

MSE (in %) (in %)
M1: 10.6 0.4 4.4 2.3 0.2 4.6 2.3 35, 23(M6) 20, 19(M6)
M3: 3.1 0.4 2.5 1.3 0.8 3.6 1.4 31, 27(M2) 20, 18(M2)
M5: 0.7 0.2 0.6 0.2 0.5 1.0 0.5 56, 21(M4) 34, 20(M9)
M7: 17.6 -0.3 3.1 1.3 -2.0 3.5 2.2 61, 17(M6) 34, 19(M8)
M8: 3.5 -0.1 1.1 0.6 -0.3 1.1 0.7 86, 10(M10) 69, 15(M10)
M10: 1.0 <0.1 0.4 0.2 0.1 0.8 0.3 78, 11(M9) 66, 15(M9)
M12: 0.7 0.2 0.6 0.3 0.6 1.1 0.6
M13: 5.1 -0.8 2.6 1.6 -0.4 3.0 1.6

Table VII. Some non-linear dose-response models.

M Link Predictor # parms
M11: logit β0 + β1d exp(−d/β2), β2 > 0 3
M12: logit β0 + β1 log(d + 1)/[β2 + log(d + 1)], β2 > 0 3
M13: logit β0 + β1[log(d + 1)]β3/(ββ3

2 + [log(d + 1)]β3), β2, β3 > 0 4
M14: logit β0 + β1/(1 + exp{[β2 − log(d + 1)]/β3}, β2, β3 > 0 4
M15: logit β0 + β1 exp{− exp[β3(log(d + 1)− β2)]}, β2, β3 > 0 4
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Table VIII. Analysis based on extended candidate set including non-liner models M11 −M13. Same
columns as in Table II, with the addition of the percentage of convergent fits over the 50,000
permutations (“Convg.”) and the multiplicity adjustment of the asymptotic P-values based on the

Bonferroni-Holm procedure (“B-H P-value”) that does not require any permutation.

asympt. raw adj. M̂ED ws/
∑

ws Convg. B-H
M AIC Ts P-value P-value P-value (mg) (%) (%) P-value
M1: 45.4 3.68 0.0086 0.0093 0.0126 NA 0 100 0.0258
M2: 40.3 8.76 0.0005 0.0007 0.0014 12.3 1 100 0.0026
M3: 38.5 10.53 0.0002 0.0004 0.0007 8.0 2 100 0.0012
M4: 34.8 14.25 <0.0001 0.0001 0.0002 2.8 10 100 0.0003
M5: 32.7 16.35 <0.0001 <0.0001 0.0001 1.3 30 100 0.0001
M6: 45.8 3.25 0.0110 0.0118 0.0126 NA 0 100 0.0220
M7: 48.1 0.90 0.0442 0.0456 0.0456 NA 0 100 0.0442
M8: 42.0 7.01 0.0020 0.0019 0.0036 6.8 0 100 0.0081
M9: 33.4 15.63 <0.0001 0.0001 0.0002 0.7 21 100 0.0003
M10: 34.9 14.20 0.0001 0.0001 0.0003 1.7 10 100 0.0005
M11: 37.0 12.07 0.0002 0.0002 0.0004 2.4 3 87 0.0011
M12: 34.7 14.32 <0.0001 <0.0001 0.0001 0.8 11 76 0.0005
M13: 34.7 14.33 0.0001 <0.0001 0.0001 1.1 11 55 0.0006

critic. value c = 0.0083 ŵMED = 1.5mg
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Candidate Models
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Figure 1. Dose-response profiles for models in Table I. Squares indicate success probabilities at dose
levels d = (0, 1, 4, 12, 24)mg. Initial guesses for parameters were chosen such that π(0) = 0.30 and
π(dmax) = 0.65, where dmax is the dose at which the maximum efficacy occurs. dmax = 24mg for all

monotone shapes, but was selected equal to 14mg for M8 and 8mg under shapes M9 and M10.
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Model Misspecification
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Figure 2. Dose-response profiles under model misspecification.
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Figure 3. Left Panel: Fitted dose-response, pointwise 95% confidence intervals and MED for model
M5. Dashed lines indicate estimated placebo effect and clinical relevant effect (with ∆=15%). Full
circles display observed proportions. Right Panel: Fitted dose-response for the four models receiving
the largest weight and their MED’s (triangles, using ∆ = 15%). The intensity of gray of the triangles

indicates the associated weight (the darker, the more weight, see Table II) in computing ŵMED, which
is located at the ”x” marker.
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Figure 4. Dose estimation performance under selected dose-response shapes and balanced, per arm
sample sizes of ni = 25, 50 or 100. Vertical lines indicate the true MED for a particular shape with a

clinical relevant effect of ∆ = 0.15.

Copyright c© 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 00:0–0
Prepared using simauth.cls


