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Abstract. On the line with density |x|p, we prove that the best single bubble is an 
interval with endpoint at the origin and that the best double bubble is two adjacent 

intervals that meet at the origin. 
 
 

1. Introduction. 
 

In the past dozen years there has been a surge of interest in manifolds with density, 
partly because of their role in Perelman’s 2006 proof of the Poincaré Conjecture. 
We consider isoperimetric problems on the line with density |x|p and prove the 
following single and double bubble theorems: 
 
Single Bubble Theorem (2.3). On the line with density |x|p (p > 0), the least-
perimeter region with given mass is an interval with one endpoint at the origin. 
 

 
Double Bubble Theorem (3.4). On the line with density |x|p, the least-perimeter 
way to enclose and separate two given masses is two adjacent intervals that meet 
at the origin. 
 

 



18 February 2019 

Density. Density is used to weight both perimeter and length. With density |x|p, 
each boundary point b contributes |b|p to the perimeter, and the mass of an interval 
(a, b) is 

∫ |𝑥|$𝑑𝑥&
' . 

For example, the region of Figure 1.1 has perimeter ap + bp + cp and mass 
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Figure 1.1. A region with (weighted) perimeter ap + bp + cp and mass 
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The Black and Red regions of Figure 2.1 have perimeter ap + bp + cp + dp + ep and 
Black mass ∫ |𝑥|$𝑑𝑥&

'  and Red mass ∫ |𝑥|$𝑑𝑥/
& + ∫ |𝑥|$𝑑𝑥2

3 . Note that the 
common boundary point counts once. 

 
Figure 2.1. A Black and a Red region with total perimeter ap + bp + cp + dp + ep, 
and Black mass ∫ |𝑥|$𝑑𝑥&

'  and Red mass ∫ |𝑥|$𝑑𝑥/
& + ∫ |𝑥|$𝑑𝑥2

3 . 
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A finite-perimeter region on the line with unit density must consist of finitely many 
intervals. With density |x|, there is the possibility of countably many intervals 
converging to the origin. 

 
History. The single bubble with our density |x|p was proved to be a sphere through 
the origin in Rn for n = 2 by Dahlberg et al. [Da] and for n > 2 by Boyer et al. [Bo]. 
For this density the double bubble is new, although it is known in Euclidean and 
other spaces (see [Mo]). It was earlier studied at the 2017 Texas State Honors 
Summer Math Camp, but that work was not completed. The double bubble for 
density |x|p remains completely opened for higher dimensions. 
 
Proofs. Our proofs employ elementary comparisons, without even any recourse to 
stability theory. For the single bubble, it follows from Rosales et al. [Ro, Thm. 
4.14(iii)] that the minimizer is an interval containing the origin, but our proof does 
cite that fact.  
 
A finite-perimeter region on the line with unit density must consist of finitely many 
intervals. With density |x|, there is the possibility of countably many intervals 
converging to the origin. 
 
Acknowledgements. This research was conducted during an Institute for 
Advanced Research winter camp for high school students in Shanghai under the 
direction of Frank Morgan. 
 

 
2. The Best Single Region 

 
Our main Theorem 2.3 identifies the least-perimeter single region of given mass on 
the line with density |x|p (p>0). We start with a geometric proof that works only for 
p = 1.  
 
2.1. Proposition. On the line with density |x|, the least-perimeter single interval of 
given mass is an interval with one endpoint at the origin. 
 
Proof. We consider two cases according to whether the interval (a, b) contains the 
origin. If (a, b) does not contain the origin, we may assume that  0 ≤ 𝑎 < 𝑏, as in 
Figure 2.1. 



18 February 2019 

 
Figure 2.1. In the first case, the origin lies outside the interval, 

which has perimeter a + b. 
 
The perimeter equals		𝑎 + 𝑏. An interval (0, b¢) of the same mass beginning at the 
origin, as in Figure 2.2, has perimeter b¢ ≤ b ≤ a + b, with equality only if we had 
that interval to start with. 
 

  
Figure 2.2. An interval of the same mass starting at the origin has perimeter 

 b¢ ≤ b ≤ a + b.  
 
 

On the other hand, as in Figure 2.3, consider an interval (-a, b) containing 
the origin and compare it to the interval (0, b¢) of the same mass, obtained by 
replacing (-a, b) with an interval (b, b¢) of the same mass. Since the latter has 
larger average density, b¢ – b < a, so that b¢ < a + b. Therefore (0, b¢) has less 
perimeter than (-a, b). 
 



18 February 2019 

 
 

Figure 2.3. In the second case, the interval (-a, b) contains the origin. 
 
 
 
 
 
2.2. Remark. We provide another argument for the second case of the preceding 
proof (Figure 2.2). The mass of (-a, 0) and (0, b) may be computed as the length 
times the average density, yielding total mass 
 

m = a(a/2) + b(b/2) =  '
@.&@

A
, 

 
so that 

 
𝑎A + 𝑏A = C√2𝑚G

A
. 

 
On this quarter circle, as in Figure 2.4, the perimeter a + b, represented by two 
sides of the pictured triangle, always exceeds the third side √2m, with equality only 
if a or b is 0, i.e., when the interval has endpoint at the origin. 

- 

- 
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Figure 2.4. Given 𝑎A + 𝑏A = C√2𝑚G
A
, a + b is minimized when a or b is 0. 

 
 
We now give our main single bubble theorem. Our first, geometric proof works 
just for density |x|. Our second, algebraic proof works for density |x|p.  
 
2.3. Theorem. On the line with density |x|p (p>0), the least-perimeter region with 
given mass is an interval with one endpoint at the origin. 
 
Proof for density |x|. Consider a region with a given mass and finite perimeter, 
perhaps consisting of many intervals as shown in Figure 2.5. Replace the mass to 
the right of the origin with a single interval (0, b). The new perimeter b no greater, 
indeed is less than or equal to the cost of the original right-most endpoint. 
Similarly replace the mass to the left of the origin by a single interval (-a, 0). We 
have thus produced a single interval (-a, b) of no greater perimeter, with equality 
only if the original region was that interval. Finally, by Proposition 2.1, a single 
interval (-a, 0) or (0, b) is best. 
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Figure 2.5. Replacing the portions of a given region to the left and right of the 
origin with single intervals reduces perimeter. Then by Proposition 2.1 a single 

interval with endpoint at the origin is best. 
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Proof for density |x|p. Consider any region of finite perimeter. It consists of 
countably many intervals, the origin the only possible limit point. If an interval 
contains the origin, split it into two intervals. Denote the intervals to the right of 
the origin by (ai, bi) and the intervals to the left of the origin by (-ci, -di). Note that 
the mass of (a, b) is the integral from a to b of xp, namely (b p+1-ap+1)/(p+1). Hence 
the total mass m satisfies 
 
 (p+1)m = ∑(bi

p+1-ai
p+1) + ∑(ci

p+1-di
p+1), 

 
and the total cost is ∑ai

p+bi
p+ci

p+di
p.  

 
Compare with the single interval (0, b) with the same mass m = bp+1/(p+1) and 
perimeter bp. Since they have the same mass, 
 
 ∑(bi

p+1-ai
p+1) + ∑(cip+1-dip+1) = bp+1. 

 
Therefore, 
 
 ∑(bi

p+1+ai
p+1) + ∑(ci

p+1+di
p+1) ≥ bp+1. 

 
Now by Lemma 2.5, the total perimeter satisfies 
 
 ∑(bi

p+ai
p) + ∑(ci

p+di
p) ≥ bp, 

 
the perimeter of (0, b), with equality only if we started with a single interval with 
endpoint at the origin. 
 
2.5. Lemma. For p > 0, suppose ∑ai

p+1 ≥ bp+1. 

 

Then                                         ∑aip ≥ bp, 
 
with equality only if there is just one nonzero ai. 

 

 

Proof.   Let                                Ai = aip 

 

                                                                          u = (p+1)/p >1. 
 
Now the lemma reduces to the standard fact that 
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                                                 (∑Ai)u ≥∑Aiu. 
 
 
Indeed, after normalizing to ∑Ai

u = 1, the result is trivial. 
 
 

3. The Best Double Region 
 
Our main Theorem 3.4 will provide the least-perimeter way to enclose and separate 
two given masses (“Black” and “Red”) on the line with density |x|p (p>0). Our first 
proof works just for density |x| start with a proposition about the half-line that will 
reduce candidates on the whole line to those consisting of two, three, or four 
adjacent intervals, in turn handled by Propositions 3.2 and 3.3. 
 
3.1. Proposition. On the positive axis {x > 0} with density |x|, given two regions, 
there are two adjacent intervals with one endpoint at 0 with the same masses and 
no more perimeter. 
 
Proof. Consider two regions such as the Black and Red intervals of Figure 3.1. We 
may assume that the last interval is Red. In comparison, take two adjacent Black 
and Red intervals at the origin with the same masses as the original regions, as in 
Figure 3.1. The first boundary point contributes no more perimeter than the last 
Black boundary point of the original, and the second boundary point contributes no 
more perimeter than the last Red boundary point of the original. Therefore, those 
adjacent intervals of the same masses have no more perimeter as claimed. 

 
 

Figure 3.1. Two intervals are better than many. 
 

0 

0 
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3.2. Proposition. On the line with density |x|, when enclosing and separating 
“Black” and “Red” masses, two intervals Red and Black meeting at the origin 
require less perimeter than any other adjacent Red-Black-Red or Red-Black with 
the origin inside Black. 
 
Proof. First, we reduce the Red-Black-Red case to the Red-Black case. As shown 
in Figure 1, the perimeter for the Black region is b + c. By symmetry, we may 
assume that c < b. 

 
Figure 3.2. Adjacent Red-Black-Red with the origin inside Black. 

 
Figure 3.3. Move the mass of (c, d) to the left of (-a, -b). 

 
As in Figure 3, move the mass of the interval (c, d) to the left to form an interval 
(-g, -a). Since we have assumed that c < b, the interval (-g, -a) is farther from the 
origin than (c, d), and hence its length is less: g-a < d-c. Therefore, the new Red-
Black perimeter, b + c + g is less than the original Red-Black-Red perimeter a + b 
+ c + d.  
 
Finally, we compare Red-Black with the origin inside Black with the origin at their 
meeting point, as in Figure 3.4. By Proposition 2.1, f  £ b + c and e < g. Therefore, 
the two intervals that meet at the origin are better as claimed.  

 
Figure 3.4. Meeting at the origin is best. 
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3.3. Proposition: On the line with density |x|, when enclosing and separating 
“Black” and “Red” masses, two intervals meeting at the origin have less 
perimeter than adjacent Red-Black-Origin-Red-Black. 
 
Proof. By symmetry, we may assume that c < b. As in Figure 3.5, we show that 
exchanging the outside masses reduces perimeter and yields the desired two 
intervals meeting at the origin.  
 
Since c < b, the interval (-a¢, -b) is farther from the origin than (c, d), and hence 
the length is less: a¢ - b < d – c. Since c < b, the interval (0, d¢) has less perimeter 
than (-a, 0): d¢ < a. 

 
Figure 3.5. Exchanging the outside masses reduces perimeter. 

 
As a result, a¢ + d¢ < a + b - c + d. Therefore, the new perimeter for both regions a¢ 
+ d¢ is less than the original perimeter a + b + c + d.  
 
  

-a -b 

-a¢ -b 

c d 

c d¢ 
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We now give our main double bubble theorem. Our first, geometric proof works 
just for density |x|. Our second, algebraic proof works for density |x|p. 
 
3.4. Theorem. On the line with density |x|, the least-perimeter way to enclose and 
separate two given masses is two adjacent intervals that meet at the origin. 
 
Proof for density |x|. Consider two regions of finite perimeter and given masses. 
To each half of the line meeting both regions, apply Proposition 3.1 to reduce to 
the case of two adjacent intervals with one endpoint at the origin. To each half of 
the line meeting just one region, a single interval with one endpoint at the origin is 
best. We may assume the resulting candidate consists of adjacent intervals of the 
“Black” and “Red” regions of one of the following three types:  

a. Red-Black with the origin inside Black,  
b. Red-Black-Red with the origin inside Black, 
c. Red-Black-Origin-Red-Black. 

By Proposition 3.2 and 3.3, two adjacent intervals that meet at the origin is best. 
 

 
Proof for density |x|p. Consider two regions (“Black” and “Red”) of finite 
perimeter. Each consists of countably many intervals, the origin the only possible 
limit point. If an interval contains the origin, split it into two intervals. Denote the 
Black intervals by (ai, bi) and (-ci, -di), the Red intervals by (ei, fi) and (-gi, -hi).  
Note that the mass of (a, b) is the integral from a to b of xp, namely 
(bp+1-ap+1 )/(p+1). Hence the total Black mass mB satisfies 
 
 (p+1)mB = ∑(bi

p+1-ai
p+1) + ∑(ci

p+1-di
p+1), 

 
and the Red mass mR satisfies 
 
 (p+1) mR = ∑(fi

p+1-ei
p+1) + ∑(hi

p+1-gi
p+1). 

 
The total perimeter is at least ∑bi

p+ci
p+di

p+fi
p+gi

p, with equality only for two 
intervals that meet at the origin. Note that by using just the outside endpoint of 
each interval, we avoid double counting endpoints common to adjacent Black and 
Red intervals. 
 

Compare with two intervals (-r, 0) and (0, s) with the same mass mB = rp+1/(p+1) 
and mass mR= sp+1/(p+1) and cost bp+ap. Since they have the same mass, 
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  ∑(bi
p+1-ai

p+1) + ∑(ci
p+1-di

p+1) = rp+1 

 

 ∑(fi
p+1-ei

p+1) + ∑(gi
p+1-hi

p+1) = sp+1 

 

Therefore, 
 
 ∑bi

p+1+ ∑ci
p+1 ≥ rp+1 

 

 ∑fi
p+1+ ∑gi

p+1 ≥ sp+1 

 

Now by Lemma A, 
 
 ∑bi

p + ∑ci
p ≥ rp 

 

 ∑fi
p + ∑hi

p ≥ sp 

 

Hence the total cost is at least 
 
 ∑bi

p + ∑ci
p+ ∑fi

p + ∑gi
p ≥ rp+sp 

 

(-r, 0) and (0, s), with equality only if we started with two intervals meeting at the 
origin. 
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